10 research outputs found

    Search for β+\beta^+EC and ECEC processes in 112^{112}Sn and ββ\beta^-\beta^- decay of 124^{124}Sn to the excited states of 124^{124}Te

    Full text link
    Limits on β+\beta^+EC and ECEC processes in 112^{112}Sn and on ββ\beta^-\beta^- decay of 124^{124}Sn to the excited states of 124^{124}Te have been obtained using a 380 cm3^3 HPGe detector and an external source consisting of natural tin. A limit with 90% C.L. on the 112^{112}Sn half-life of 0.92×10200.92\times 10^{20} y for the ECEC(0ν\nu) transition to the 03+0^+_3 excited state in 112^{112}Cd (1871.0 keV) has been established. This transition is discussed in the context of a possible enhancement of the decay rate by several orders of magnitude given that the ECEC(0ν)(0\nu) process is nearly degenerate with an excited state in the daughter nuclide. Prospects for investigating such a process in future experiments are discussed. The ββ\beta^-\beta^- decay limits for 124^{124}Sn to the excited states of 124^{124}Te were obtained on the level of (0.81.2)×1021(0.8-1.2)\times 10^{21} y at the 90% C.L.Comment: 17 pages, 5 figure

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    Risk, health and welfare. Policies, strategies and practice.

    Get PDF
    This text sets the practice of health and welfare professionals within a broad context. It examines the alternative ways in which risk can be defined, the influence of risk on the development of social policy, its impact on welfare agency activities and on professional decision making. The book provides a perspective on the definition, assessment and management of risk. It explores how students learn about risk, how education providers equip future professionals to deal with risk issues in practice and whether employing agencies provide supportive or blaming structure
    corecore