50 research outputs found

    Pharmacological cancer treatment and venous thromboembolism risk

    Get PDF
    Risk factors for cancer-associated thrombosis are commonly divided into three categories: patient-, cancer-, and treatment-related factors. Currently, different types of drugs are used in cancer treatment. Chemotherapy has been identified as an independent risk factor for venous thromboembolism (VTE). However, it should be noted, that the risk of VTE is not consistent among all cytotoxic agents. In addition, different supportive care drugs, such as erythropoiesis stimulating agents or granulocyte colony stimulating factors, and hormonotherapy have been associated to an increased risk of VTE. Immunotherapy and molecular-targeted therapies have significantly changed the treatment of cancer over the past decade. The main subtypes include tyrosine-kinase inhibitors, monoclonal antibodies, small molecules, and immunomodulatory agents. The relationship between VTE and targeted therapies remains largely unknown

    Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud Recomendaciones basadas en consenso de expertos e informadas en la evidencia

    Get PDF
    The “Asociación Colombiana de Infectología” (ACIN) and the “Instituto de Evaluación de Nuevas Tecnologías de la Salud” (IETS) created a task force to develop recommendations for Covid 19 health care diagnosis, management and treatment informed, and based, on evidence. Theses reccomendations are addressed to the health personnel on the Colombian context of health services. © 2020 Asociacion Colombiana de Infectologia. All rights reserved

    Observation of inverse Compton emission from a long γ-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    Tissue culture of ornamental cacti

    Full text link

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Momentum scale calibration of the LHCb spectrometer

    Get PDF
    For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/ψ → μ + μ - and B+ → J/ψ K + decays and leads to a relative accuracy of 3 × 10-4 on the momentum scale

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    EVALUACIÓN IN SILICO DE LA INTERACCIÓN DE LA ENZIMA DPP-IV CON DERIVADOS DEL ÁCIDO CAFEICO

    Get PDF
    Este estudio tuvo como objetivo evaluar mediante herramientas in silico el potencial inhibidor de la enzima Dipeptidil-peptidasa-4 (DPP-IV) de los derivados del ácido cafeico. El ácido cafeico es un compuesto orgánico clasificado como ácido hidroxicinámico, se puede encontrar en una variedad de bebidas, como café preparado, en frutas, hierbas y especias. En primer lugar, se predijo la biotransformación metabólica del ácido cafeico mediante el servidor web Way2Drug y, a continuación, se determinó el acoplamiento molecular mediante el programa AutoDock Vina. Los resultados mostraron que la O-glucuronidación y la O-sulfatación fueron las principales reacciones encontradas y pertenecen a la fase II del metabolismo. Según el análisis in silico, el ácido cafeico 3-O-glucurónido y el ácido cafeico 4-O-glucurónido fueron los principales derivados del ácido cafeico que exhibieron las energías libres de afinidad más altas con la enzima DPP-IV (-8.0 y -8.1 kcal/mol, respectivamente) en comparación con los metabolitos sulfatados. Este estudio allana el camino para identificar los metabolitos glucuronizados del ácido cafeico como inhibidores potenciales de la DPP-IV, una enzima con un papel importante en el metabolismo de la glucosa
    corecore