102 research outputs found
Slow plasmon modes in polymeric salt solutions
The dynamics of polymeric salt solutions are presented. The salt consists of
chains and , which are chemically different and interact with a
Flory-interaction parameter , the chain ends carry a positive
charge whereas the chain ends are modified by negative charges. The
static structure factor shows a peak corresponding to a micro phase separation.
At low momentum transfer, the interdiffusion mode is driven by electrostatics
and is of the plasmon-type, but with an unusually low frequency, easily
accessible by experiments. This is due to the polymer connectivity that
introduces high friction and amplifies the charge scattering thus allowing for
low charge densities. The interdiffusion mode shows a minimum (critical slowing
down) at finite when the interaction parameter increases we find then a low
frequency quasi-plateau.Comment: accepted in Europhys. Let
Modification of BRCA1-associated breast cancer risk by HMMR overexpression
Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-kappa B signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer. The effect of hyaluronan-mediated motility receptor (HMMR) expression in BRCA1-associated breast cancer risk remains unknown. Here, HMMR overexpression induces the activation of cGAS-STING and non-canonical NF-kappa B signalling, instigating an immune permissive environment for breast cancer development
Visceral leishmaniasis in 26 HIV-negative adults
<p>Abstract</p> <p>Background</p> <p>Visceral leishmaniasis is a notifiable parasitic disease that had increased in incidence in our region on the past few years. It is common in children. In adults, it occurs more on a background of immunodeficiency, and frequently with incomplete clinical manifestations, making the diagnosis complicated.</p> <p>Findings</p> <p>The aim of our study is to reveal different features of visceral leishmaniasis in adults, through the analysis of its epidemiological, clinical and biological parameters, in a group of 26 patients. No one was infected with HIV or under immunosuppressive therapy Clinical presentation was generally conservative, but there was few differences in adults compared to children, concerning both the clinical symptoms and the laboratory parameters. Diagnosis was provided by direct examination of bone marrow smears in 24 cases (sensitivity 92%), and anti-leishmanial serology in the others.</p> <p>Conclusion</p> <p>We should think to the diagnosis of VL even if the patient is not known immunocompromised, and even if the clinical is incomplete, to avoid a delay of care which can lead to serious complications.</p
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing
Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected, that is consistent with the data on lethality of BRCA1 knockout mice. This report exemplifies that the identification of a single cancer-predisposing mutation within the index patient may not be sufficient in some circumstances. Ideally, all family members affected by breast or ovarian tumor disease have to be subjected to the DNA testing, and failure to detect the mutation in any of them calls for the search of the second cancer-associated allele
Ligand Bound β1 Integrins Inhibit Procaspase-8 for Mediating Cell Adhesion-Mediated Drug and Radiation Resistance in Human Leukemia Cells
BACKGROUND: Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which β1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with β1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. METHODOLOGY/PRINCIPAL FINDINGS: Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN), laminin, collagen-1; 5–100 µg/cm(2) coating concentration) cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP), caspase activation, and protein analysis. Overexpression of β1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti β1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K) inhibitors, coprecipitation experiments and siRNA-mediated β1 integrin silencing provided further data showing an interaction between FN-ligated β1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. CONCLUSIONS/SIGNIFICANCE: The presented data suggest that the ligand status of β1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a β1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting β1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies
Transcriptome Analysis during Human Trophectoderm Specification Suggests New Roles of Metabolic and Epigenetic Genes
In humans, successful pregnancy depends on a cascade of dynamic events during early embryonic development. Unfortunately, molecular data on these critical events is scarce. To improve our understanding of the molecular mechanisms that govern the specification/development of the trophoblast cell lineage, the transcriptome of human trophectoderm (TE) cells from day 5 blastocysts was compared to that of single day 3 embryos from our in vitro fertilization program by using Human Genome U133 Plus 2.0 microarrays. Some of the microarray data were validated by quantitative RT-PCR. The TE molecular signature included 2,196 transcripts, among which were genes already known to be TE-specific (GATA2, GATA3 and GCM1) but also genes involved in trophoblast invasion (MUC15), chromatin remodeling (specifically the DNA methyltransferase DNMT3L) and steroid metabolism (HSD3B1, HSD17B1 and FDX1). In day 3 human embryos 1,714 transcripts were specifically up-regulated. Besides stemness genes such as NANOG and DPPA2, this signature included genes belonging to the NLR family (NALP4, 5, 9, 11 and 13), Ret finger protein-like family (RFPL1, 2 and 3), Melanoma Antigen family (MAGEA1, 2, 3, 5, 6 and 12) and previously unreported transcripts, such as MBD3L2 and ZSCAN4. This study provides a comprehensive outlook of the genes that are expressed during the initial embryo-trophectoderm transition in humans. Further understanding of the biological functions of the key genes involved in steroidogenesis and epigenetic regulation of transcription that are up-regulated in TE cells may clarify their contribution to TE specification and might also provide new biomarkers for the selection of viable and competent blastocysts
Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis
Unusual behaviour of poly(ethylene-oxide) in aqueous mixtures
The model system of poly(ethylene-oxide) or PEO, where the changing hydrogen-bond connectivity of the water has large effect on the conformation of the polymer chain, in mixtures of water and acetonitrile, is experimentally studied. The results show the existence of a threshold water content in the system at which the 3d connectivity of the water network begins. Unusual expansion of the polymer chain, an effect larger than that observed in either of the pure solvents, is seen. Upon addition of small amounts of a monovalent salt, binding of ion to polymer takes place in pure acetonitrile solutions. Salt ions begin to co-ordinate with water molecules at the same solvent ratio as the threshold for water network formation. Ions now no longer complex to PEO; instead, hydrogen bonding of water to the polymer strongly dictates conformation in this regime
- …