79 research outputs found

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas

    Get PDF
    The low temperature boundary layer plasma (Scrape-Off-Layer or SOL) between the hot core and the surrounding vessel determines the level of power-loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces – and subsequent erosion. There is evidence against local enhancement of ionization inducing shoulder formation. We find that increases in SOL parallel resistivity, Λdiv (=[L||νei Ωi ]/cs Ωe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in upstream SOL shoulder amplitude, As only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with As for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv with As was also found for H-mode discharges. Thus, while Λdiv above a threshold of ~1 may be necessary for shoulder formation and/or growth, another shoulder mechanism is required. More significantly we find that in contrast to parallel resistivity, outer divertor recycling as quantified by the total outer divertor Balmer Dα emission, I-Dα, does scale with shoulder amplitude where Λdiv does and even where Λdiv fails. Divertor recycling could lead to SOL density shoulder formation through: a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and b) changes in radial electric fields which lead to ExB poloidal flows as well as potentially affecting the SOL turbulence birth characteristics. Thus changes in divertor recycling may be the sole process in bringing about SOL density shoulders or in tandem with parallel resistivity

    Neutral pathways and heat flux widths in vertical- and horizontal-target EDGE2D-EIRENE simulations of JET

    Get PDF
    This paper further analyses the EDGE2D-EIRENE simulations presented by Chankin et al (2017 Nucl. Mater. Energy 12 273), of L-mode JET plasmas in vertical-vertical (VV) and Vertical-horizontal (VH) divertor configurations. As expected, the simulated outer divertor ionisation source peaks near the separatrix in VV and radially further out in VH. We identify the reflections of recycled neutrals from lower divertor tiles as the primary mechanism by which ionisation is concentrated on the outer divertor separatrix in the VV configuration. These lower tile reflection pathways (of neutrals from the outer divertor, and to an even greater extent from the inner divertor) dominate the outer divertor separatrix ionisation. In contrast, the lower-tile-reflection pathways are much weaker in the VH simulation and its outer divertor ionisation is dominated by neutrals which do not reflect from any surfaces. Interestingly, these differences in neutral pathways give rise to strong differences in the heat flux density width λq at the outer divertor entrance: λq = 3.2 mm in VH compared to λq = 11.8 mm in VV. In VH, a narrow channel exists in the near scrape-off-layer (SOL) where the convected heat flux, driven by strong Er × B flow and thermoelectric current, dominates over the conducted heat flux. The width of this channel sets λq and is determined by the radial distance between the separatrix and the ionisation peak in the outer divertor

    Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating

    Get PDF
    Peer reviewe

    Overview of the JET results in support to ITER

    Get PDF

    Assessment of the effect of parallel temperature gradients in the JET SOL on Te measured by divertor target Langmuir probes

    No full text
    Abstract Higher than expected electron temperatures (Te) are often measured by divertor Langmuir probes (LP) in high recycling and detached regimes in JET and other tokamaks. As a possible mechanism to explain this discrepancy, we investigate the effect of penetration of fast, almost collisionless electrons connecting the hot upstream scrape-off layer (SOL) region to the divertor targets in JET. We simulate the electron velocity distribution function (EVDF) near the divertor targets using a simple 1D kinetic model using parallel SOL profiles from EDGE2D-EIRENE simulations. The resulting EVDF is used to construct synthetic LP current-voltage (IV) characteristics and evaluation of Te is performed in the same way as for experimental data. Results indicate that the process does not explain the anomalously high Te values estimated from the target probe measurements if the EDGE2D-EIRENE simulated parallel profiles are a good representation of reality

    Electromagnetic ELM and inter-ELM filaments detected in the COMPASS Scrape-Off Layer

    No full text
    In fusion devices strong interest is deserved to the edge filament transport both related to turbulent and ELMy structures, because they are believed to provide important interaction with the plasma facing components and divertor plates. Among their features also the electromagnetic (EM) properties are expected to play an important role and in particular for the high beta regimes expected in future devices. The presence of ELM and inter-ELM electromagnetic filaments were detected during H-mode discharges in COMPASS device Scrape-Off Layer, where a new probe head was recently developed and commissioned. The diagnostic allows the simultaneous measurements of electrostatic and magnetic fluctuations with high time resolution, suitable for the identification of EM features of filaments. The method allows in particular the direct measurement of the current density associated to filaments. Detailed electrostatic and electromagnetic features analysis revealed a complex and fragmented structure within a single ELM and strong peaks in parallel current density Jtor are observed to characterize the ELM bunch. Analogous EM structures are observed also in inter-ELM phase, but with more than one order of magnitude lower intensity and time scale. Keywords: Electromagnetic filaments, ELMs, Scrape-Off Layer, Magnetic fluctuations, Current densit
    corecore