2,823 research outputs found

    Fast life history traits promote invasion success in amphibians and reptiles

    Get PDF
    Competing theoretical models make different predictions on which life history strategies facilitate growth of small populations. While ‘fast’ strategies allow for rapid increase in population size and limit vulnerability to stochastic events, ‘slow’ strategies and bet-hedging may reduce variance in vital rates in response to stochasticity. We test these predictions using biological invasions since founder alien populations start small, compiling the largest dataset yet of global herpetological introductions and life history traits. Using state-of-the-art phylogenetic comparative methods, we show that successful invaders have fast traits, such as large and frequent clutches, at both establishment and spread stages. These results, together with recent findings in mammals and plants, support ‘fast advantage’ models and the importance of high potential population growth rate. Conversely, successful alien birds are bet-hedgers. We propose that transient population dynamics and differences in longevity and behavioural flexibility can help reconcile apparently contrasting results across terrestrial vertebrate classes

    Higher Descent Data as a Homotopy Limit

    Get PDF
    We define the 2-groupoid of descent data assigned to a cosimplicial 2-groupoid and present it as the homotopy limit of the cosimplicial space gotten after applying the 2-nerve in each cosimplicial degree. This can be applied also to the case of nn-groupoids thus providing an analogous presentation of "descent data" in higher dimensions.Comment: Appeared in JHR

    Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors

    Get PDF
    We present the first demonstration of reproducible harmonic mode-locked operation from a novel design of monolithic semiconductor laser comprising a compound cavity formed by a 1-D photonic-bandgap (PBG) mirror. Mode-locking (ML) is achieved at a harmonic of the fundamental round-trip frequency with pulse repetition rates from 131 GHz up to a record high frequency of 2.1 THz. The devices are fabricated from GaAs-Al-GaAs material emitting at a wavelength of 860 nm and incorporate two gain sections with an etched PBG reflector between them, and a saturable absorber section. Autocorrelation studies are reported which allow the device behavior for different ML frequencies, compound cavity ratios, and type and number of intra-cavity reflectors to be analyzed. The highly reflective PBG microstructures are shown to be essential for subharmonic-free ML operation of the high-frequency devices. We have also demonstrated that the single PBG reflector can be replaced by two separate features with lower optical loss. These lasers may find applications in terahertz; imaging, medicine, ultrafast optical links, and atmospheric sensing

    Spectrum of Sizes for Perfect Deletion-Correcting Codes

    Full text link
    One peculiarity with deletion-correcting codes is that perfect tt-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius tt with respect to the Levenshte\u{\i}n distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect tt-deletion-correcting code, given the length nn and the alphabet size~qq. In this paper, we determine completely the spectrum of possible sizes for perfect qq-ary 1-deletion-correcting codes of length three for all qq, and perfect qq-ary 2-deletion-correcting codes of length four for almost all qq, leaving only a small finite number of cases in doubt.Comment: 23 page

    Alternative approach to computing transport coefficients: application to conductivity and Hall coefficient of hydrogenated amorphous silicon

    Full text link
    We introduce a theoretical framework for computing transport coefficients for complex materials. As a first example, we resolve long-standing inconsistencies between experiment and theory pertaining to the conductivity and Hall mobility for amorphous silicon and show that the Hall sign anomaly is a consequence of localized states. Next, we compute the AC conductivity of amorphous polyanaline. The formalism is applicable to complex materials involving defects and band-tail states originating from static topological disorder and extended states. The method may be readily integrated with current \textit{ab initio} methods.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Simulator for Microlens Planet Surveys

    Full text link
    We summarize the status of a computer simulator for microlens planet surveys. The simulator generates synthetic light curves of microlensing events observed with specified networks of telescopes over specified periods of time. Particular attention is paid to models for sky brightness and seeing, calibrated by fitting to data from the OGLE survey and RoboNet observations in 2011. Time intervals during which events are observable are identified by accounting for positions of the Sun and the Moon, and other restrictions on telescope pointing. Simulated observations are then generated for an algorithm that adjusts target priorities in real time with the aim of maximizing planet detection zone area summed over all the available events. The exoplanet detection capability of observations was compared for several telescopes.Comment: Proc. IAU Symp. No. 293 "Formation, detection, and characterization of extrasolar habitable planets", ed. by N. Haghighipour. 4 pages, in pres

    A predictive model for kidney transplant graft survival using machine learning

    Full text link
    Kidney transplantation is the best treatment for end-stage renal failure patients. The predominant method used for kidney quality assessment is the Cox regression-based, kidney donor risk index. A machine learning method may provide improved prediction of transplant outcomes and help decision-making. A popular tree-based machine learning method, random forest, was trained and evaluated with the same data originally used to develop the risk index (70,242 observations from 1995-2005). The random forest successfully predicted an additional 2,148 transplants than the risk index with equal type II error rates of 10%. Predicted results were analyzed with follow-up survival outcomes up to 240 months after transplant using Kaplan-Meier analysis and confirmed that the random forest performed significantly better than the risk index (p<0.05). The random forest predicted significantly more successful and longer-surviving transplants than the risk index. Random forests and other machine learning models may improve transplant decisions.Comment: This work has been published: Pahl ES, Street WN, Johnson HJ, Reed AI. "A Predictive Model for Kidney Transplant Graft Survival Using Machine Learning." 4th International Conference on Computer Science and Information Technology (COMIT 2020), November 28-29, 2020, Dubai, UAE. ISBN: 978-1-925953-30-5. Volume 10, Number 16.10.5121/csit.2020.10160

    Impact of Rubin Observatory LSST Template Acquisition Strategies on Early Science from the Transients and Variable Stars Science Collaboration: Non-time-critical Science Cases

    Get PDF
    Vera C. Rubin Observatory Legacy Survey of Space and Time, LSST, will revolutionize modern astronomy by producing an extremely deep (coadded depth ~27 mag) depth-limited survey of the entire southern sky (LSST Science Collaboration et al. 2009). The 8.4 m large-aperture, wide-field telescope, which is based in Cerro Pachón, will image the entire Southern sky every three nights in multiple bands (SDSS-u, g, r, i, z, y) and produce a fire-hose of data, 20 Tb each night, concluding in a 60 petabyte data set as the legacy of the 10 yr survey. Extracting meaningful light curves from variable objects requires difference imaging to both identify variability and calibrate light curve data products. Templates, co-added groups of visits that act as an image of the "static" sky, are a key component of Difference Imaging Analysis (DIA) and as such are of paramount importance for all science that involves variable objects. As the "non-time-critical" science cases discussed here are mostly periodic, they generally do not depend upon the survey alert stream; however, templates are still crucial for performing science and calibrations during the first year. We provide recommendations for observing strategies for template acquisition starting from commissioning and through Year 1 of the survey

    RoboTAP: Target priorities for robotic microlensing observations

    Get PDF
    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys

    Involutive Categories and Monoids, with a GNS-correspondence

    Get PDF
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective correspondence between states on involutive monoids and inner products. This correspondence exists in arbritrary involutive categories
    corecore