39 research outputs found

    The SAR11 Group of Alpha-Proteobacteria Is Not Related to the Origin of Mitochondria

    Get PDF
    Although free living, members of the successful SAR11 group of marine alpha-proteobacteria contain a very small and A+T rich genome, two features that are typical of mitochondria and related obligate intracellular parasites such as the Rickettsiales. Previous phylogenetic analyses have suggested that Candidatus Pelagibacter ubique, the first cultured member of this group, is related to the Rickettsiales+mitochondria clade whereas others disagree with this conclusion. In order to determine the evolutionary position of the SAR11 group and its relationship to the origin of mitochondria, we have performed phylogenetic analyses on the concatenation of 24 proteins from 5 mitochondria and 71 proteobacteria. Our results support that SAR11 group is not the sistergroup of the Rickettsiales+mitochondria clade and confirm that the position of this group in the alpha-proteobacterial tree is strongly affected by tree reconstruction artefacts due to compositional bias. As a consequence, genome reduction and bias toward a high A+T content may have evolved independently in the SAR11 species, which points to a different direction in the quest for the closest relatives to mitochondria and Rickettsiales. In addition, our analyses raise doubts about the monophyly of the newly proposed Pelagibacteraceae family

    Trade-Offs Between Reducing Complex Terminology and Producing Accurate Interpretations from Environmental DNA: Comment on “Environmental DNA: What\u27s behind the term?” by Pawlowski et al., (2020)

    Get PDF
    In a recent paper, “Environmental DNA: What\u27s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring,” Pawlowski et al. argue that the term eDNA should be used to refer to the pool of DNA isolated from environmental samples, as opposed to only extra-organismal DNA from macro-organisms. We agree with this view. However, we are concerned that their proposed two-level terminology specifying sampling environment and targeted taxa is overly simplistic and might hinder rather than improve clear communication about environmental DNA and its use in biomonitoring. This terminology is based on categories that are often difficult to assign and uninformative, and it overlooks a fundamental distinction within eDNA: the type of DNA (organismal or extra-organismal) from which ecological interpretations are derived

    Multigene Phylogeny of Choanozoa and the Origin of Animals

    Get PDF
    Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals

    HTLV-1 infection in solid organ transplant donors and recipients in Spain

    Get PDF
    Background: HTLV-1 infection is a neglected disease, despite infecting 10–15 million people worldwide and severe illnesses develop in 10% of carriers lifelong. Acknowledging a greater risk for developing HTLV-1 associated illnesses due to immunosuppression, screening is being widely considered in the transplantation setting. Herein, we report the experience with universal HTLV testing of donors and recipients of solid organ transplants in a survey conducted in Spain. Methods: All hospitals belonging to the Spanish HTLV network were invited to participate in the study. Briefly, HTLV antibody screening was performed retrospectively in all specimens collected from solid organ donors and recipients attended since the year 2008. Results: A total of 5751 individuals were tested for HTLV antibodies at 8 sites. Donors represented 2312 (42.2%), of whom 17 (0.3%) were living kidney donors. The remaining 3439 (59.8%) were recipients. Spaniards represented nearly 80%. Overall, 9 individuals (0.16%) were initially reactive for HTLV antibodies. Six were donors and 3 were recipients. Using confirmatory tests, HTLV-1 could be confirmed in only two donors, one Spaniard and another from Colombia. Both kidneys of the Spaniard were inadvertently transplanted. Subacute myelopathy developed within 1 year in one recipient. The second recipient seroconverted for HTLV-1 but the kidney had to be removed soon due to rejection. Immunosuppression was stopped and 3 years later the patient remains in dialysis but otherwise asymptomatic. Conclusion: The rate of HTLV-1 is low but not negligible in donors/recipients of solid organ transplants in Spain. Universal HTLV screening should be recommended in all donor and recipients of solid organ transplantation in Spain. Evidence is overwhelming for very high virus transmission and increased risk along with the rapid development of subacute myelopath

    Rapid subacute myelopathy following kidney transplantation from HTLV-1 donors: role of immunosuppresors and failure of antiretrovirals

    Get PDF
    Two kidney transplant recipients from a single donor became infected with HTLV-1 (human T-lymphotropic virus type 1) in Spain. One developed myelopathy 8 months following surgery despite early prescription of antiretroviral therapy. The allograft was removed from the second recipient at month 8 due to rejection and immunosuppressors discontinued. To date, 3 years later, this patient remains infected but asymptomatic. HTLV-1 infection was recognized retrospectively in the donor, a native Spaniard who had sex partners from endemic regions. Our findings call for a reappraisal of screening policies on donor-recipient organ transplantation. Based on the high risk of disease development and the large flux of persons from HTLV-1 endemic regions, pre-transplant HTLV-1 testing should be mandatory in Spain

    Phylogenomic Analysis of Odyssella thessalonicensis Fortifies the Common Origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana Mitochondrion

    Get PDF
    Background: The evolution of the Alphaproteobacteria and origin of the mitochondria are topics of considerable debate. Most studies have placed the mitochondria ancestor within the Rickettsiales order. Ten years ago, the bacterium Odyssella thessalonicensis was isolated from Acanthamoeba spp., and the 16S rDNA phylogeny placed it within the Rickettsiales. Recently, the whole genome of O. thessalonicensis has been sequenced, and 16S rDNA phylogeny and more robust and accurate phylogenomic analyses have been performed with 65 highly conserved proteins. Methodology/Principal Findings: The results suggested that the O. thessalonicensis emerged between the Rickettsiales and other Alphaproteobacteria. The mitochondrial proteins of the Reclinomonas americana have been used to locate the phylogenetic position of the mitochondrion ancestor within the Alphaproteobacteria tree. Using the K tree score method, nine mitochondrion-encoded proteins, whose phylogenies were congruent with the Alphaproteobacteria phylogenomic tree, have been selected and concatenated for Bayesian and Maximum Likelihood phylogenies. The Reclinomonas americana mitochondrion is a sister taxon to the free-living bacteria Candidatus Pelagibacter ubique, and together, they form a clade that is deeply rooted in the Rickettsiales clade. Conclusions/Significance: The Reclinomonas americana mitochondrion phylogenomic study confirmed that mitochondri

    Phylogenomics Reshuffles the Eukaryotic Supergroups

    Get PDF
    Background. Resolving the phylogenetic relationships between eukaryotes is an ongoing challenge of evolutionary biology. In recent years, the accumulation of molecular data led to a new evolutionary understanding, in which all eukaryotic diversity has been classified into five or six supergroups. Yet, the composition of these large assemblages and their relationships remain controversial. Methodology/Principle Findings. Here, we report the sequencing of expressed sequence tags (ESTs) for two species belonging to the supergroup Rhizaria and present the analysis of a unique dataset combining 29908 amino acid positions and an extensive taxa sampling made of 49 mainly unicellular species representative of all supergroups. Our results show a very robust relationship between Rhizaria and two main clades of the supergroup chromalveolates: stramenopiles and alveolates. We confirm the existence of consistent affinities between assemblages that were thought to belong to different supergroups of eukaryotes, thus not sharing a close evolutionary history. Conclusions. This well supported phylogeny has important consequences for our understanding of the evolutionary history of eukaryotes. In particular, it questions a single red algal origin of the chlorophyll-c containing plastids among the chromalveolates. We propose the abbreviated name ‘SAR’ (Stramenopiles+Alveolates+Rhizaria) to accommodate this new super assemblage of eukaryotes, which comprises the largest diversity of unicellular eukaryotes

    Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families.</p> <p>Results</p> <p>In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll <it>a/b</it>-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping.</p> <p>Conclusions</p> <p>The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.</p

    Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.</p> <p>Results</p> <p>We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the <it>Poaceae </it>family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and <it>Arabidopsis</it>. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine <it>Arabidopsis </it>mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.</p> <p>Conclusion</p> <p>The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.</p
    corecore