3,117 research outputs found

    2004 ATLAS Combined Testbeam : Computation and Validation of the Electronic Calibration Constants for the Electromagnetic Calorimeter

    Get PDF
    From July to November 2004, a full slice of the ATLAS barrel detector was studied in testbeam. A complete electromagnetic barrel module was used, read by the final electronics and operated by ATLAS TDAQ software. This note describes in details the electronic calibration procedure and the cell energy reconstruction: each step of the procedure and its associated software is explicitly described. The general calibration procedure is very similar to the one applied in previous barrel and endcap standalone testbeams. Emphasis is put on tools developed in the context of the combined testbeam which can be used for commissioning and operation of the calorimeters in ATLAS. Many validation studies were performed on each calibration constant. Previously unobserved effects such as the FEB temperature dependence of some constants were observed. Overall, the calibration performances are at the expected level

    Stimulus - response curves of a neuronal model for noisy subthreshold oscillations and related spike generation

    Full text link
    We investigate the stimulus-dependent tuning properties of a noisy ionic conductance model for intrinsic subthreshold oscillations in membrane potential and associated spike generation. On depolarization by an applied current, the model exhibits subthreshold oscillatory activity with occasional spike generation when oscillations reach the spike threshold. We consider how the amount of applied current, the noise intensity, variation of maximum conductance values and scaling to different temperature ranges alter the responses of the model with respect to voltage traces, interspike intervals and their statistics and the mean spike frequency curves. We demonstrate that subthreshold oscillatory neurons in the presence of noise can sensitively and also selectively be tuned by stimulus-dependent variation of model parameters.Comment: 19 pages, 7 figure

    The comparative effectiveness of migraine preventive drugs: a systematic review and network meta-analysis

    Get PDF
    OBJECTIVE: While there are several trials that support the efficacy of various drugs for migraine prophylaxis against placebo, there is limited evidence addressing the comparative safety and efficacy of these drugs. We conducted a systematic review and network meta-analysis to facilitate comparison between drugs for migraine prophylaxis. METHODS: We searched MEDLINE, EMBASE, CENTRAL, and clinicaltrials.gov from inception to August 13, 2022, for randomized trials of pharmacological treatments for migraine prophylaxis in adults. Reviewers worked independently and in duplicate to screen references, extract data, and assess risk of bias. We performed a frequentist random-effects network meta-analysis and rated the certainty (quality) of evidence as either high, moderate, low, or very low using the GRADE approach. RESULTS: We identified 74 eligible trials, reporting on 32,990 patients. We found high certainty evidence that monoclonal antibodies acting on the calcitonin gene related peptide or its receptor (CGRP(r)mAbs), gepants, and topiramate increase the proportion of patients who experience a 50% or more reduction in monthly migraine days, compared to placebo. We found moderate certainty evidence that beta-blockers, valproate, and amitriptyline increase the proportion of patients who experience a 50% or more reduction in monthly migraine days, and low certainty evidence that gabapentin may not be different from placebo. We found high certainty evidence that, compared to placebo, valproate and amitriptyline lead to substantial adverse events leading to discontinuation, moderate certainty evidence that topiramate, beta-blockers, and gabapentin increase adverse events leading to discontinuation, and moderate to high certainty evidence that (CGRP(r)mAbs) and gepants do not increase adverse events. CONCLUSIONS: (CGRP(r)mAbs) have the best safety and efficacy profile of all drugs for migraine prophylaxis, followed closely by gepants.info:eu-repo/semantics/publishedVersio

    Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    Get PDF
    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10% sqrt(E) for the sampling term and about 0.2% for the local constant term

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 ”g/”l [SEM 0.12], - LLLT = 0.048 ”g/”l [SEM 0.01]), IL-1ÎČ (placebo-control = 2.292 ”g/”l [SEM 0.74], - LLLT = 0.12 ”g/”l [SEM 0.03]), IL-6 (placebo-control = 3.946 ”g/”l [SEM 0.98], - LLLT = 0.854 ”g/”l [SEM 0.33]), IL-10 (placebo-control = 1.116 ”g/”l [SEM 0.22], - LLLT = 0.352 ”g/”l [SEM 0.15]), and COX-2 (placebo-control = 4.984 ”g/”l [SEM 1.18], LLLT = 1.470 ”g/”l [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    Position resolution and particle identification with the ATLAS EM calorimeter

    Full text link
    In the years between 2000 and 2002 several pre-series and series modules of the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon and pion beams. The performance of the calorimeter with respect to its finely segmented first sampling has been studied. The polar angle resolution has been found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection has been measured to be about 3.5 for 90% photon selection efficiency at pT=50 GeV/c. Electron-pion separation studies have indicated that a pion fake rate of (0.07-0.5)% can be achieved while maintaining 90% electron identification efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM

    Robust Off- and Online Separation of Intracellularly Recorded Up and Down Cortical States

    Get PDF
    BACKGROUND: The neuronal cortical network generates slow (<1 Hz) spontaneous rhythmic activity that emerges from the recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize the occurrence of up and down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings from different areas of the cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages, such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics. We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the method presented here is tested on data that departs from highly regular alternating up and down states. CONCLUSIONS/SIGNIFICANCE: We define a simple method to detect cortical states that can be applied in real time for offline processing of large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the study of cortical dynamics. An open-source MATLAB toolbox, and Spike 2-compatible version are made freely available

    Synaptic Transmission and Plasticity in an Active Cortical Network

    Get PDF
    BACKGROUND: The cerebral cortex is permanently active during both awake and sleep states. This ongoing cortical activity has an impact on synaptic transmission and short-term plasticity. An activity pattern generated by the cortical network is a slow rhythmic activity that alternates up (active) and down (silent) states, a pattern occurring during slow wave sleep, anesthesia and even in vitro. Here we have studied 1) how network activity affects short term synaptic plasticity and, 2) how synaptic transmission varies in up versus down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings obtained from cortex in vitro and in vivo were used to record synaptic potentials, while presynaptic activation was achieved either with electrical or natural stimulation. Repetitive activation of layer 4 to layer 2/3 synaptic connections from ferret visual cortex slices displayed synaptic augmentation that was larger and longer lasting in active than in silent slices. Paired-pulse facilitation was also significantly larger in an active network and it persisted for longer intervals (up to 200 ms) than in silent slices. Intracortical synaptic potentials occurring during up states in vitro increased their amplitude while paired-pulse facilitation disappeared. Both intracortical and thalamocortical synaptic potentials were also significantly larger in up than in down states in the cat visual cortex in vivo. These enhanced synaptic potentials did not further facilitate when pairs of stimuli were given, thus paired-pulse facilitation during up states in vivo was virtually absent. Visually induced synaptic responses displayed larger amplitudes when occurring during up versus down states. This was further tested in rat barrel cortex, where a sensory activated synaptic potential was also larger in up states. CONCLUSIONS/SIGNIFICANCE: These results imply that synaptic transmission in an active cortical network is more secure and efficient due to larger amplitude of synaptic potentials and lesser short term plasticity
    • 

    corecore