56 research outputs found

    Plankton DNA extraction from Sterivex filter units

    Get PDF
    The objective of this protocol is to provide a reliable and replicable method for the DNA extraction of lake micro-plankton to be used for downstream DNA analysis. This protocol is one of those proposed by the Eco-AlpsWater consortium to promote the implementation of High Throughput Sequencing (HT S) of environmental DNA (eDNA) in the biomonitoring and ecological assessment of water bodies. The extraction is performed from samples filtered through Sterivex cartridges (Sterivex™ GP 0.22μm) and stored at -20°C, as described in the protocol dx.doi.org/10.17504/protocols.io.xn6fmhe, and with the use of the DNeasy® PowerWater Sterivex Kit (QIAGEN) with specific modifications adapted to plankton DNA extraction. The application proposed here, in the context of EcoAlpsWater, aims at comparing DNA inventories to traditional phytoplanktonic inventories and at characterizing more broadly the micro-planktonic diversity through eDNA analysis (including bacteria). This protocol is part of the deliverables provided by the WP1 of the Eco-AlpsWater project. All members of the EcoAlpsWater consortium (http://www.alpine-space.eu/projects/eco-alpswater/en/home) contributed to the optimization of this protocol

    Metabarcoding protocol: Analysis of Bacteria (including Cyanobacteria) using the 16S rRNA gene and a DADA2 pipeline (Version 1)

    Get PDF
    This protocol has been prepared as part of the Interreg Alpine Space project Eco-AlpsWater (ASP569) - Innovative Ecological Assessment and Water Management Strategy for the Protection of Ecosystem Services in Alpine Lakes and Rivers, Activity A.T1.3, Deliverable D.T1.3.2 – 1, https://www.alpine-space.eu/projects/eco-alpswater/en/hom

    Metabarcoding protocol: Analysis of protists using the 18S rRNA gene and a DADA2 pipeline (Version 1)

    Get PDF
    This protocol has been prepared as part of the Interreg Alpine Space project Eco-AlpsWater (ASP569) - Innovative Ecological Assessment and Water Management Strategy for the Protection of Ecosystem Services in Alpine Lakes and Rivers, Activity A.T1.3, Deliverable D.T1.3.2 – 2, https://www.alpine-space.eu/projects/eco-alpswater/en/hom

    eDNA metabarcoding biodiversity of freshwater fish in the Alpine area

    Get PDF
    Environmental DNA (eDNA) based methods are proving to be a promising tool for freshwater fish biodiversity assessment in Europe within the Water Framework Directive (WFD, 2000/60/EC) especially for large rivers and lakes where current fish monitoring techniques have known shortcomings. Many freshwater fish are experiencing critical population declines with risk of local or global extinction because of intense anthropogenic pressure and this can have serious consequences on freshwater ecosystem functioning and diversity. Within the EU project Eco-AlpsWater, advanced high throughput sequencing (HTS) techniques are used to improve the traditional WFD monitoring approaches by using environmental DNA (eDNA) collected in Alpine waterbodies. An eDNA metabarcoding approach specifically designed to measure freshwater fish biodiversity in Alpine lakes and rivers has been extensively evaluated by using mock samples within an intercalibration test. This eDNA method was validated and used to study fish biodiversity of eight lakes and six rivers of the Alpine region including four EC countries (Austria, France, Italy, Slovenia) and Switzerland. More in detail, this metabarcoding approach, based on HTS sequencing of a section of the 12S rRNA gene, was used to assess freshwater fish biodiversity and their distribution in the different habitats. These data represent the first attempt to provide a comprehensive description of freshwater fish diversity in different ecosystems of the Alpine area confirming the applicability of eDNA metabarcoding analyses for the biomonitoring of fish inhabiting Alpine and perialpine lakes and rivers

    Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems

    Get PDF
    Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere

    The precursors of chocolate aroma.

    Get PDF
    The subject of this research was an experimental study of the development of chocolate aroma during the commercial processing of cocoa beans. The components of unroasted aroma cocoa beans have been fractionated, and the various groups of substances obtained tested for the development of aroma when roasted. The results obtained provide further evidence of the involvement of simple amino acids, reducing sugars and flavonoids in the formation of the primary aroma of chocolate products, and a mechanism for the formation and mixing of these substances during cocoa fermentation is described. Model mixtures of these compounds have been examined in order to assess the extent of the contribution of individual compounds to the production of the aroma. The reaction of these model mixtures have also been examined under the conditions obtaining during commercial bean roasting, and combined gas chromstography-mase spectrometry has been used to compare their volatile reaction products with these present in roasted cocoa beans. The results of these studies indicate the importance of the natural environment of the precursors in the control of the extent of subsequent reactions, and the consequences of the 'dry state' reaction conditions in this respect. Various types of compound formed in these reactions are described and their possible importance in the recognition of chocolate aroma is discussed. The experimental results are discussed in terms of literature surveys of the current state of knowledge of both chocolate aroma development, and the aroma potential of amino acid-reducing sugar reactions

    The Molecular Diversity of Freshwater Picoeukaryotes Reveals High Occurrence of Putative Parasitoids in the Plankton

    Get PDF
    Eukaryotic microorganisms have been undersampled in biodiversity studies in freshwater environments. We present an original 18S rDNA survey of freshwater picoeukaryotes sampled during spring/summer 2005, complementing an earlier study conducted in autumn 2004 in Lake Pavin (France). These studies were designed to detect the small unidentified heterotrophic flagellates (HF, 0.6–5 µm) which are considered the main bacterivores in aquatic systems. Alveolates, Fungi and Stramenopiles represented 65% of the total diversity and differed from the dominant groups known from microscopic studies. Fungi and Telonemia taxa were restricted to the oxic zone which displayed two fold more operational taxonomic units (OTUs) than the oxycline. Temporal forcing also appeared as a driving force in the diversification within targeted organisms. Several sequences were not similar to those in databases and were considered as new or unsampled taxa, some of which may be typical of freshwater environments. Two taxa known from marine systems, the genera Telonema and Amoebophrya, were retrieved for the first time in our freshwater study. The analysis of potential trophic strategies displayed among the targeted HF highlighted the dominance of parasites and saprotrophs, and provided indications that these organisms have probably been wrongfully regarded as bacterivores in previous studies. A theoretical exercise based on a new ‘parasite/saprotroph-dominated HF hypothesis’ demonstrates that the inclusion of parasites and saprotrophs may increase the functional role of the microbial loop as a link for carbon flows in pelagic ecosystems. New interesting perspectives in aquatic microbial ecology are thus opened

    Lake sedimentary dna research on past terrestrial and aquatic biodiversity: Overview and recommendations

    Get PDF
    The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.</jats:p
    corecore