122 research outputs found

    HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila melanogaster

    Get PDF
    Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1a in the adaptive response, however, has not been determined. Here, we investigate how HIF influences hypoxic adaptation throughout Drosophila melanogaster development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in sima mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIFa and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIFa in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs

    Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder

    Get PDF
    Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF

    Hair Cortisol in Twins : Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes

    Get PDF
    A. Palotie on työryhmän jäsen.Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.Peer reviewe

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Association of whole-genome and NETRIN1 signaling pathway-derived polygenic risk scores for Major Depressive Disorder and white matter microstructure in UK Biobank

    Get PDF
    Background: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genomic-PRSs), were associated with white matter microstructure. Methods: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390). Results: We found significantly lower FA in the superior longitudinal fasciculus (β = −.035, p =.029) and significantly higher MD in a global measure of thalamic radiations (β =.029, p =.021), as well as higher MD in the superior (β =.034, p =.039) and inferior (β =.029, p =.043) longitudinal fasciculus and in the anterior (β =.025, p =.046) and superior (β =.027, p =.043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts. Conclusions: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts

    Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With Depression

    Get PDF
    Background The prevalence of depression is higher in individuals with autoimmune diseases, but the mechanisms underlying the observed comorbidities are unknown. Shared genetic etiology is a plausible explanation for the overlap, and in this study we tested whether genetic variation in the major histocompatibility complex (MHC), which is associated with risk for autoimmune diseases, is also associated with risk for depression. Methods We fine-mapped the classical MHC (chr6: 29.6–33.1 Mb), imputing 216 human leukocyte antigen (HLA) alleles and 4 complement component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium Major Depressive Disorder Working Group and the UK Biobank. The total sample size was 45,149 depression cases and 86,698 controls. We tested for association between depression status and imputed MHC variants, applying both a region-wide significance threshold (3.9 × 10−6) and a candidate threshold (1.6 × 10−4). Results No HLA alleles or C4 haplotypes were associated with depression at the region-wide threshold. HLA-B*08:01 was associated with modest protection for depression at the candidate threshold for testing in HLA genes in the meta-analysis (odds ratio = 0.98, 95 confidence interval = 0.97–0.99). Conclusions We found no evidence that an increased risk for depression was conferred by HLA alleles, which play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly associated with schizophrenia. These results suggest that any HLA or C4 variants associated with depression either are rare or have very modest effect sizes
    corecore