84 research outputs found

    Magnetic Characterization of Nanocrystalline Nickel Ferrite Films Processed by a Spin-Spraying Method

    Get PDF
    Highly crystalline nickel ferrite films with different chemical compositions were processed via the spin-spraying method and their morphological, structural and magnetic properties were subsequently investigated. Regardless of the chemical composition, films with variable thicknesses are constructed by 200–400 nm spherical grains grown in the direction normal to the substrate surface. Magnetization measurements show that the spinel ferrite films present a hysteretic behaviour at room temperature with a randomly oriented in-plane easy axis and an anisotropy constant K1 ≈ −2.5 × 104 erg cm−3 Furthermore, the absence of an angular dependence of the coercivity for the in-plane measurement of magnetization coupled with the ‘M’-shaped angular dependence of the out-of-plane measurement, indicates that the anisotropy of this film is predominantly crystalline shape anisotropy

    Knee Internal Forces in Moderate Squat Exercise

    Get PDF
    This paper deals with internal forces of human knee during moderate squat exercise. The moderate squat exercise consists of a descending phase from standing to the lowest position (largest flexion angle) in which no significant contact between thigh and calf occurs, and an ascending phase back to standing position. This research predicts the internal forces such as muscle forces, contact forces, and ligamentous forces. The ligamentous structures in this research consist of Anterior Cruciate Ligament (ACL), Posterior Cruciate Ligament (PCL), Lateral Collateral Ligament (LCL), and Medial Collateral Ligament (MCL). The ligaments are modeled as nonlinear elastic strips (they do not carry compression forces). An optimization technique was used to determine the muscle and contact forces present in the knee during the squat exercise

    Voltage Response of Primary Resonance of Electrostatically Actuated MEMS Clamped Circular Plate Resonators

    Get PDF
    This paper investigates the voltage-amplitude response of soft alternating current (AC) electrostatically actuated micro-electro-mechanical system (MEMS) clamped circular plates for sensing applications. The case of soft AC voltage of frequency near half natural frequency of the plate is considered. Soft AC produces small to very small amplitudes away from resonance zones. Nearness to half natural frequency results in primary resonance of the system, which is investigated using the method of multiple scales (MMS) and numerical simulations using reduced order model (ROM) of seven terms (modes of vibration). The system is assumed to be weakly nonlinear. Pull-in instability of the voltage-amplitude response and the effects of detuning frequency and damping on the response are reported

    REDUCED ORDER MODEL ON DC BIAS EFFECT ON THE FREQUENCY RESPONSE OF ELECTROSTATICALLY ACTUATED BIOSENSOR MICROPLATES

    Get PDF
    ABSTRACT This paper investigates the frequency response of microplates under electrostatic actuation. The microplate is parallel to a fixed ground plate. The electrostatic force that actuates the system is given by both Alternate Current (AC) and Direct Current (DC) voltages. The AC frequency is set to be near half natural frequency of the structure. Damping influence is also investigated in this paper. The method of investigation is Reduced Order Model. The effects of various parameters on the response of the structure are reported. INTRODUCTION In the past decade microelectromechanical systems have gained large popularity among the research community. These devices offer many benefits over other devices including cost effect manufacturing, size advantage, and low power requirements. These devices also have many different applications in various fields, the most popular application being sensors In order to take advantage of the possible applications these devices can serve it is crucial to understand the behavior and phenomena occuring at the micro scal

    Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence

    Get PDF
    Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules

    Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort.

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced ≄1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with ≄1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not ≄5. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin.This study was sponsored by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing assistance for this manuscript, furnished by Blair Jarvis MSc, ELS, of Health Interactions, was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    Background: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. Methods: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. Results: SVR24 rates were 46.1 % (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1,2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. Conclusions: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginter-feron alfa-2a/ribavirin

    ON NON-AXISYMMETRICAL TRANSVERSE VIBRATIONS OF CIRCULAR PLATES OF CONVEX PARABOLIC THICKNESS VARIATION

    No full text
    ABSTRACT This paper presents an approach for finding the solution of the partial differential equation of motion of the nonaxisymmetrical transverse vibrations of axisymmetrical circular plates of convex parabolical thickness. This approach employed both the method of multiple scales and the factorization method for solving the governing partial differential equation. The solution has been assumed to be harmonic angular-dependent. Using the method of multiple scales, the partial differential equation has been reduced to two simpler partial differential equations which can be analytically solved and which represent two levels of approximation. Solving them, the solution resulted as first-order approximation of the exact solution. Using the factorization method, the first differential equation, homogeneous and consisting of fourthorder spatial-dependent and second-order time-dependent operators, led to a general solution in terms of hypergeometric functions. Along with given boundary conditions, the first diferential equation and the second differential equation, which was nonhomogeneous, gave respectively so-called zero-order and first-order approximations of the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson&apos;s ratio on the natural frequencies and mode shapes could be further studied using the first-order approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations. KEYWORDS Nonuniform plate, non-axisymmetrical vibrations, method of multiple scales, factorization method

    Self-adjoint differential equations for classical orthogonal polynomials

    Get PDF
    AbstractThis paper deals with spectral type differential equations of the self-adjoint differential operator, 2r order:L(2r)[Y](x)=1ρ(x)drdxrρ(x)ÎČr(x)drY(x)dxr=λrnY(x).If ρ(x) is the weight function and ÎČ(x) is a second degree polynomial function, then the corresponding classical orthogonal polynomials, {Qn(x)}n=0∞, are shown to satisfy this differential equation when λrn is given byλrn=∏k=0r-1(n-k)[α1+(n+k+1)ÎČ2],where α1 and ÎČ2 are the leading coefficients of the two polynomial functions associated with the classical orthogonal polynomials. Moreover, the singular eigenvalue problem associated with this differential equation is shown to have Qn(x) and λrn as eigenfunctions and eigenvalues, respectively. Any linear combination of such self-adjoint operators has Qn(x) as eigenfunctions and the corresponding linear combination of λrn as eigenvalues
    • 

    corecore