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Chalcones are among the leading bioactive flavonoids with a therapeutic potential
implicated to an array of bioactivities investigated by a series of preclinical and clinical
studies. In this article, different scientific databases were searched to retrieve studies
depicting the biological activities of chalcones and their derivatives. This review
comprehensively describes preclinical studies on chalcones and their derivatives
describing their immense significance as antidiabetic, anticancer, anti-inflammatory,
antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents.
Besides, clinical trials revealed their use in the treatment of chronic venous
insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and
derivatives indicate possible hindrance and improvement in relation to its nutraceutical
and pharmaceutical applications. Multifaceted and complex underlying mechanisms of
chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to
inhibit a number of pathological microorganisms and parasites, and to control a number of
signaling molecules and cascades related to disease modification. Clinical studies on
chalcones revealed general absence of adverse effects besides reducing the clinical signs
and symptoms with decent bioavailability. Further studies are needed to elucidate their
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structure activity, toxicity concerns, cellular basis of mode of action, and interactions with
other molecules.

Keywords: chalcones, flavonoids, bioavailability, pharmacological studies, molecular mechanisms, clinical trials

INTRODUCTION

Chalcones are among the leading categories of flavonoids across
the entire kingdom of plant (Hideo and Tatsurou, 1997; Abbas
et al., 2014). The term chalcone is originated from the Greek
name chalcos which means bronze. Chalcones were initially
manufactured in the research lab in late 1800s
(Shimokoriyama, 1962). The chalcone chemistry has created
thorough scientific research all the way through the globe
(Hideo and Tatsurou, 1997).

Naturally existing chalcones were not separated till the year
1910 (Shimokoriyama, 1962). Chalcones that derived from
nature exist mostly as colors of petal and furthermore have
been established in the heartwood, leaf, bark, fruit, and root of
a range of plants and botanicals (Schroder, 1999).

Chalcones are also recognized as benzyl acetophenone.
Chalcones are alpha, beta unsaturated ketones holding two
fragrant rings (rings A and B) having different arrangement of
substituents. In chalcones, two fragrant rings are connected by an
aliphatic three carbon series (Rojas et al., 2002) (Figure 1).

Plants containing chalcones, for instance, the Glycyrrhiza,
Piper, Angelica, and Ruscus genus, have long been utilized as
therapeutic remedies in Balkan countries (Schroder, 1999;
Chatzopoulou et al., 2013; Maccari and Ottana, 2015).
Numerous unadulterated chalcones were accepted for
clinical applications or experimented in humans.
Licochalcones segregated from the plant of licorice has been
stated to have a range of biological activities, for instance,
antispasmodic, chemopreventive, antimalarial, antitumour,
anti-inflammatory, antifungal, antioxidant, and antibacterial
activities (Real, 1967; Takahashi et al., 1998). Both apples and
sour fruits are loaded nutritional sources of dihydrochalcones
and chalcones. Moreover, these complexes could even compose
a better contribution to the overall daily consumption of
unrefined or organic polyphenolics compounds than other
considerably researched flavonoids (Tomás-Barberán and
Clifford, 2000).

The purpose of this review is to summarize the most important
pharmacological activities highlighting the cellular and molecular
mechanisms of action of natural and synthetic chalcones, to
better understand their therapeutic potential in the future.

METHODOLOGY

Search Strategy
An extensive research was conducted into the available scientific
databases PubMed, Scopus, Scielo, and Science Direct using the
terms “chalcones,” “bioavailability,” “biological activities,” “anti-
inflammatory,” “antidiabetic,” “neuroprotective,” “antioxidant,”
“anticancer,” “antibacterial,” and “antifungal.”

Inclusion Criteria
The inclusion criteria included research studies or reviews that
reported the pharmacological actions of chalcones were included;
articles published in English, book chapters that also included
phytochemical data, and preclinical studies on cell cultures or
animal model with evidence of cellular and molecular
mechanisms of action; studies that included chalcones and
their derivatives from plants whose nomenclature is included
in the Plant List (http://www.theplantlist.org/).

Exclusion Criteria
The exclusion criteria included abstracts, case reports, and
conference proceedings that did not meet the inclusion
criteria, as well as studies that included homeopathic
preparations.

Data Collection
Selected pharmacological studies included data on chalcones and
their derivatives analyzed, experimental model (in vivo or
in vitro), dose, concentration, and results of pharmacological
activities with molecular mechanisms included. All information
obtained and analyzed in this comprehensive and updated review
were summarized in tables and figures.

PRECLINICAL PHARMACOLOGICAL
ACTIVITIES OF CHALCONES

Preclinical studies on chalcones and their derivatives have shown
their high potential as antidiabetic, anticancer, anti-
inflammatory, antimicrobial, antioxidant, antiparasitic,
psychoactive, and neuroprotective agents (Figure 2).

Antidiabetic Activity
In Vitro Antidiabetic Activity
Several synthetic chalcones have been reported to have potential
inhibitory activity against α-glucosidase or α-amylase.

FIGURE 1 | General chemical structure of chalcones.
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The IC50 value of synthetic intermediate chalcones (1–24) varied
between 15 ± 0.14 and 385 ± 5.60 μM (Ansari et al., 2005). Similar
observations were noted with the Chana series (Bak et al., 2011), and
with the tris-chalcone derivatives (5a-5i), all showing higher
inhibition profiles than those of acarbose (Burmaoglu et al., 2019).
Studies on hydroxyl chalcones and bis-chalcones (1a-1m) and (2a-
2m) were performed in connection to the inhibition kinetics (Cai
et al., 2017). By using the abovementionedmethods, natural chalcone
derivatives (morusalbins A-D) showed significant inhibitory activities
against α-glucosidase (Ha et al., 2018). 3ʹ,5ʹ-digeranylated chalcone
(16) demonstrated noncompetitive inhibition characteristics (Ryu
et al., 2010; Sun et al., 2015). In another study, compound 4m was
found to be the most active compared to the other chalcone-triazole
derivatives (Chinthala et al., 2015). Numerous studies have shown
some chalcones and/or their derivatives (such as chalcone 1 with an
IC50 of 840 ± 2.50 μMwhile that of acarbose was 860.23 ± 6.10 μM)
with significant inhibitory effects than those of the standards used
(Imran et al., 2015; Monisha et al., 2018).

Chalcone units of conjugates also exhibited moderate inhibitory
activities against α-glucosidase (Tang et al., 2014), with the highest
activity (IC50 � 3.2 ± 0.2 µM) recorded by conjugate 1b. Moreover,
moderate inhibitory effect was observed by piperonal chalcones
derivatives against α-amylase (Acharjee et al., 2018).

Four chalcone derivatives were synthesized, and it was found that
the compound 3-(4-hydroxyphenyl)-1-phenylprop-2-en-1-one has
an inhibitory effect on α-amylase (Attarde et al., 2014). Chalcone 4
(butein) has been shown to be the most potent compound among 41
derivatives, exhibiting significant inhibition of α-glucosidase,
moderate inhibition of α-amylase, and competitive inhibition of
both the enzymes (Rocha et al., 2019).

In another study, chalcone 20 was the most active inhibitor
(IC50 � 0.4 µM) of α-glucosidase among 20 derivatives, exhibiting
noncompetitive inhibition (Seo et al., 2005; Tajuddeen et al.,
2018). In addition, the inhibitory capacity of chalcones 1–13 and
bis-chalcones 14–18 against α-amylase (IC50 � 1.25 ± 1.05–2.40 ±
0.09 µM) was found to be comparable to that of acarbose (IC50 �
1.04 ± 0.3 µM) (Attarde et al., 2014). Furthermore, researchers
have recorded promising activities of different chalcones in
inhibiting the aforementioned enzymes, occupying the active
sites (Najafian et al., 2010; Rawat et al., 2011; Gomes et al., 2017).

A study evaluated the antidiabetic activity of sulfonamide
chalcone derivatives in silico using methods like homology
modeled structure, molecular docking, and MD simulation. This

study indicated that these derivatives can bind to residues of the active
site as the same way as drugs such as acarbose and voglibose
(Bharatham et al., 2008).

Prenylated chalcones (3, 4, 7) and flavanone-coupled chalcones
(9, 12, 13) of Boesenbergia rotunda (L.) Mansf. roots exhibited
inhibition greater than 90% at the concentration of 20 μg/ml plus
an inhibitory power of α-glucosidase higher than that of acarbose
(IC50 � 1.2 mM) (Chatsumpun et al., 2017). A natural chalcone
(lavandulylated chalcone) exhibited inhibitory activity against
β-glucosidase (IC50 � 57 μM) while noncompetitively inhibiting
α-glucosidase (Kim et al., 2006). Similarly, another study isolated
xanthohumol (XN) from Humulus lupulus L. as a potential
inhibitor of α-glucosidase (IC50 � 8.8 μM) reversibly and
noncompetitively (Liu et al., 2014). Other natural chalcones (6,
7, 20) were identified by from Derris indica (Lam.) Bennet root
extract as a moderate inhibitor of α-glucosidase, and compound 6
showed the most potent activity (IC50 � 103.5 µM) (Rawat et al.,
2011).

Natural prenylchalconaringenins (1) and (2) have been
investigated for their inhibitory properties against digestive
enzymes; 3′-geranylchalconaringenin (2) showed moderate
inhibition of α-amylase (IC50 � 20.46 µM) and competitive and
irreversible inhibition of α-glucosidase (IC50 � 1.08 µM) (Sun
et al., 2017). In addition, these two enzymes were also inhibited
by three natural chalcones from Psoralea corylifolia (Mounika, 2015).
Another chalcone (2ʹ,4ʹ-dihydroxy-6ʹ-methoxy-3ʹ,5ʹ-
dimethylchalcone) (DMC) from Cleistocalyx operculatus (Roxb.)
Merr. and L.M.Perry flower buds inhibited pancreatic α-amylase
(IC50 � 69.35) (Zhang and Lu, 2012). Regarding GLUT4-dependent
glucose uptake, 4-hydroxyderricin (4HD) and xanthoangelol (XAG),
two natural chalcones from Angelica keiskei (Miq.) Koidz. stem juice,
increased this uptake via the signaling pathway of LKB1/AMP-
activated protein kinase in 3T3-L1 adipocytes (Ohta et al., 2015).

In Vivo Antidiabetic Activity
Several authors have evaluated the antihyperglycemic activity of
synthetic chalcones in streptozotocin-induced diabetic rats
(Satyanarayana et al., 2004; Shukla et al., 2007; Najafian et al.,
2010; Rawat et al., 2011; Mahapatra et al., 2017a; Sengupta et al.,
2017; Shukla et al., 2017; Tajammal et al., 2017; Acharjee et al.,
2018; Naidu, 2018; Raju et al., 2018). It was found that these
compounds have a moderate to potential ability to reduce blood
sugar. The same effect was noted in starch-loaded rats, using

FIGURE 2 | Summarized scheme of the most important pharmacological properties of chalcones.
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chalcone derivative 8c (Rawat et al., 2011). Moreover, serum
glucose levels were measured in hyperglycemic rats treated with
chalcone analogs, which showed a significant antihyperglycemic
effect (Alberton et al., 2008).

In a study conducted by Damazio et al., it was evaluated the
antihyperglycemic activity of nitrochalcones (Damazio et al.,
2009) and naphthylchalcones (Damazio et al., 2010) in
diabetic rats by determining blood glucose levels, insulin
secretion, and 14C-glucose uptake into the soleus muscle of
the animal. This indicates that the effect of chalcones on
lowering blood glucose in the hyperglycemic rat can be
attributed mainly to insulin secretion with potency similar
to that of glipizide. In addition, the glycogen levels in the liver,
brain, and spinal cord of rats were estimated following
25 mg/kg dose of chalcone administration for 7 days to
discover that these chalcones were able to reduce the
glycogen content in the liver, and therefore exerted a
strong antidiabetic activity (Jamal et al., 2009).
Furthermore, when 2-hydroxychalcone was administered to
male rats, they rendered insulin resistance by a high fructose
diet. This chalcone was found to have significant
hypoglycemic activity by increasing insulin secretion and
glycosylated hemoglobin (Jayanthi et al., 2012).

Chalcone derivatives (4A-4E) were tested on sucrose-loaded
diabetic albino mice to find that compound 4-C (2-(3-(4-
methoxyphenyl)-1H-pyrazol-5-yl) phenol) achieved the most
promising activity, which is supported by docking study (Jain
and Jain, 2017). For male mice (type 2 diabetes), at doses of
200–300 mg/kg/day, 2′, 4′-dihydroxy-4-methoxydihydrochalcone
(DMC-2) exhibited a hypoglycemic effect comparable to that of
metformin (antidiabetic drug) (Ribnicky et al., 2009).

Chalcone derivatives (13a-h) and (19a-h) instreptozotocin-
induced diabetic mice, compounds13e, 13g, and 19f reduced TG,
TC, and Glu levels, respectively (Zhu et al., 2018). Diabetic mice
were treated with trihydroxychalcone derivatives, and therefore,
chalcone 13 stimulated activation of AMP-activated protein
kinase (AMPK), increased muscle FAO, improved tolerance to
glucose, and decreased fat accumulation in the liver and skeletal
muscles (Shin et al., 2018). Hypoglycemic activity of sulfonylurea
chalcones 1-3 was also exhibited in normoglycemic rabbits to
show that all these chalcones have activity comparable to that of
gliclazide (Rao et al., 2014).

Significant hypoglycemic effects were displayed by five
isoliquiritigenin (ISL) derivatives isolated from Glycyrrhiza
glabra L. rhizomes tested in streptozotocin-induced diabetic
mice (Gaur et al., 2014), chalcone-6ʹ-hydroxy-2ʹ,3,4-
trimethoxy-4ʹ-O-β-D-glucopyranoside (1) from Pouzolzia
rugulosa (Wedd.) Acharya & Kravtsova. leaves tested in
alloxan-induced diabetic mice (Semwal et al., 2009), and 2′4-
dihydroxy chalcone-4-glucoside fromAdhatoda zeylanicaMedik.
flower (Purnima et al., 2012). Likewise, in mice with
hyperglycemia, xanthoangelol (XA) and 4-hydroxyderricin
(4HD), two major types of chalcones derived from Angelica
keiskei (Miq.) Koidz. lowered blood sugar by demonstrating
insulin-like activity with preventive effects of (4HD) on the
development of diabetes in genetically diabetic KK-Ay mice
(Enoki et al., 2007; Enoki et al., 2010).

Table 1 summarizes the in vitro and in vivo antidiabetic
properties of natural and synthetic chalcones.

Anti-Inflammatory Activity
Literature reported several chalcones and their derivative that
have shown promise to inhibit cyclooxygenase (COX) (Table 2)
(Araico et al., 2006; Nyandoro et al., 2012; Bano et al., 2013;
Jantan et al., 2014; Özdemir et al., 2015; Okuda-Tanino et al.,
2017; Farzaneh et al., 2018). In a study to assess the anti-
inflammatory effect, new chalcone derivatives using
carrageenan-induced hind paw edema model, the results
showed that 5′-chloro-2′-hydroxy- 4′6′-dimethyl-3, 4, 5-
trimethoxychalcone (1) exhibited the most potent anti-
inflammatory activity with a 90% inhibition of edema (Bano
et al., 2013). In another study, a novel class indole-based
chalcones were evaluated for their inhibitory effects on COX-1
and COX-2, and showed remarkable inhibition of COX-1
(Özdemir et al., 2015). The nitrogen-containing chalcone
derivatives showed inhibition of some enzymes implicated to
inflammatory process such as β-glucuronidase, COX-2, and
trypsin (Bandgar et al., 2010). In another investigation, the
synthetic fluoro-hydroxy substituted pyrazole chalcones
demonstrated that exhibited selective inhibitory effect against
COX-2 enzyme and a moderate effect against COX-1. The
activity was related to the inhibition of COX-2 (Jadhav et al.,
2013).

Natural chalcones have also shown their ability to inhibit
COX-1 and COX-2: 2-hydroxy-3,4,6-trimethoxychalcone
isolated from Toussaintia orientalis Verdc. root and stem bark
extracts had a potent inhibitory effect against both the enzymes
(Nyandoro et al., 2012).

Chalcones exhibited promising activity against NO and PGE2
(Table 2). The effect of dimethylamino-chalcones on the
generation of NO and PGE2 mediators was studied in LPS-
stimulated RAW 264.7 macrophage cells. The results showed
that chalcones suppressed NO production in a dose-depending
manner (Rojas et al., 2002). In another study, in order to evaluate
the inhibitory effects of trimethoxychalcone derivatives on NO
production, the results showed a suppression of NO and PGE2 in
LPS-activated RAW 264.7 macrophage cells by 2,4,6-trimethoxy-
20-trifluoromethylchalcone. This suggestion was supported by
the data which showed an inhibition of nitrite and PGE2 levels
(Rojas et al., 2003a; Rojas et al., 2003b).

Natural chalcones have also shown the ability to inhibit NO
and PGE2 production. Mallotophilippen chalcones isolated from
Mallotus philippinensis fruit extracts, exhibited suppression of
NO synthesis in a murine macrophage-like cell line (Daikonya
et al., 2004). Xanthohumol and dihydroxanthohumol isolated
from Humulus lupulus L. are other natural chalcones, which
considerably inhibited NO production by suppressing iNOS
induced by LPS and INF-γ in a murine macrophage-like cell
line (Zhao et al., 2003).

Chalcones also have proved their ability to inhibit NF-κB
(Gilmore, 2006; Mahapatra et al., 2017b; Chu and Guo, 2016).
Other chalcone derivatives such as isoliquiritigenin, butein, and
homobutein (Orlikova et al., 2012) have suppressed TNF-α
mediated by the inhibition of NF-κB gene expression
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TABLE 1 | Antidiabetic activities of chalcones: in vitro and in vivo preclinical pharmacological studies.

Chalcones/source Experimental
model/method

Type of
study

Results/mechanisms Ref

1-{3-[3-(substituted phenyl) prop-2-enoyl] phenyl}
thioureas/synthesized

STZ-induced diabetic rats In vivo Anti-hyperglycemic: ↓blood glucose level
normalization of serum biochemical parameters
10–20 mg/kg, bw

(Acharjee et al.,
2018)

Intermediate chalcones 1–24/synthesized α-Glucosidase inhibitory assay In vitro ↓α-glucosidase IC50 � 15 mg/ml (Ansari et al., 2005)
Chalcone derivatives (MVC1-MVC5)/synthesized Glucose uptake in yeast cells In vitro Chalcones MCV4, MCV5: ↑ glucose uptake

IC50 � 5–15 mg/ml
(Asogan and
Aupati, 2016)

Chalcone derivatives/synthesized STZ-induced diabetic rats In vivo Anti-hyperglycemic: ↓blood glucose level 10 mg/kg
bw

(Alberton et al.,
2008)

Chana chalcone derivatives/synthesized α-Glucosidase assay dipeptidyl
peptidase-4 Adipocyte
differentiation

In vitro Chana 1: ↓α-glucosidase, ↓DPP-4 ↑adipocyte
differentiation IC5 � 250 μM/L

(Bak et al., 2011)

Fluoro-substituted tris-chalcones derivatives (5a-5i)/
synthesized

α-Glucosidase inhibitory assay In vitro Chalcones 5a-5i: ↓α-glycosidase IC50 � 22.5 μM (Burmaoglu et al.,
2019)

Hydroxyl chalcones and bis-chalcones (1a-1m) and
(2a-2m)/synthesized

α-Glucosidase assay Kinetics
of enzyme inhibition Glucose
level

In vitro ↓α-glucosidase Chalcones 2c, 2g, 2j,2l, are
noncompetitive inhibitors Chalcone2g: ↓blood
glucose level

(Cai et al., 2017)

Prenylated chalcones (3, 4, 7) Flavanone-coupled
chalcones (9, 12, 13)/natural from Boesenbergia
rotunda (L.) mansf

α-Glucosidase inhibitory assay In vitro ↓α-glucosidase, IC50 � 1.2–20 μg/ml (Chatsumpun et al.,
2017)

Chalcone-triazole derivatives/synthesized α-Glucosidase inhibitory assay In vitro The most active chalcones: 4m, IC50 � 67.78 μM
4p, IC50 � 74.94 μM 4s, IC50 � 102.10 μM

(Chinthala et al.,
2015)

Chalcone derivatives/Synthesized STZ-induced diabetic rats In vivo ↑ secretion of insulin No effects on glucose uptake
into muscle No effects on blood glucose levels
50 mg/kg bw

(Damazio et al.,
2009)

Naphthylchalcones/synthesized STZ-induced diabetic rats In vivo ↑glucose tolerance curve ↑ secretion of insulin
10 mg/kg bw

(Damazio et al.,
2010)

Xanthoangelol (XA) and 4-hydroxyderricin (4HD)/
natural from Angelica keiskei (miq.) koidz

STZ-induced diabetic Mice In vivo Chalcone 4HD: ↓blood sugar level No effects on
secretion of insulin diet containing 0.15% chalcone
4HD

(Enoki et al., 2010)

Five derivatives from isoliquiritigenin (ISL)/natural from
Glycyrrhiza glabra L

STZ-induced diabetic Mice In vivo Anti-hyperglycemic: ↓blood glucose level
100 mg/kg bw

(Gaur et al., 2014)

Chalcone derivatives: four DAs (morusalbins A−D)/
natural from Morus alba L.

α-Glucosidase inhibitory assay In vitro DAs (1–4, 6–8, 11, 12, 14), DAs (4, 6–8):
↓α-glucosidase IC50 � 2.25–5.90 μM

(Ha et al., 2018)

Chalcone 1/synthesized α-Glucosidase inhibitory assay In vitro ↓α-glucosidase, IC50 � 840 μM, compared with
acarbose IC50 � 860.25 ± 6.20 μM

(Imran et al., 2015)

Chalcones: BUT, ISL, DHC, HDMC, DCC, DCCP,
CMC, CMCP/synthesized

STZ-induced diabetic rats In vivo ↓glycogen content in liver 25 mg/kg bw (Jamal et al., 2009)

2- hydroxychalcone/synthesized HFD-induced diabetic rats In vivo ↓secretion of insulin ↑glycosylated hb, ↑ glucose
blood level 25 mg/kg bw

(Jayanthi et al.,
2012)

Lavandulylated chalcone/natural from Sophora
flavescens aiton

α-Glucosidase β-amylase
β-galactosidase α-amylase
inhibitory assays

In vitro ↓β-galactosidase, IC50 � 57 μM ↓α-glucosidase,
noncompetitive inhibition ↓β-amylase, mixed
inhibition IC50 � 57 μM

(Kim et al., 2006)

Xanthohumol (XN)/natural from Humulus lupulus L α-Glucosidase inhibitory assay In vitro ↓ α-glucosidase; reversible, noncompetitive
IC50 � 8.8 μM

(Liu et al., 2014)

Chalcone derivatives/synthesized α-Amylase α-glucosidase
inhibitory assays

In vitro ↓α-amylase, ↓α-Glucosidase IC50 � 1250 μg/ml (Monisha et al.,
2018)

Diarylsulfonylurea-chalcone hybrids/synthesized STZ-induced diabetic rats In vivo Anti-hyperglycemic: ↓blood glucose level 10, 30,
50 mg/kg bw

(Naidu, 2018)

Trans-chalcone (benzylideneacetophenone) STZ-induced diabetic Rats In vivo Anti-hyperglycemic: ↓blood glucose level ↑
moderate secretion of insulin 2, 8, 16, 32 mg/kg bw

(Najafian et al.,
2010)

4-Hydroxyderricin (4HD) xanthoangelol (XAG)/natural
from Angelica keiskei (miq.) koidz

3T3-L1 adipocytes In vitro Chalcones 4HD, XAG: ↑glucose uptake GLUT4-
dependent through the LKB1/AMPK signaling
pathway IC50 � 20 μmol/L

(Ohta et al., 2015)

Chalcones AC1-AC11, BC1- BC6) 2′, 4-dihydroxy
chalcone -4-glucoside/synthesized and natural from
Justicia adhatoda L

Measuring the glucose diffusion In vitro All chalcones: Good anti-hyperglycemic effect AC6:
The highest activity IC50 � 100 μg/ml

(Purnima et al.,
2012)

Chalcones (6, 7, 20)/natural from Derris indica (lam.)
bennet

α-Glucosidase inhibitory assay In vitro ↓ α-glucosidase chalcone 6: IC50 � 103.5 μM (Romagnoli et al.,
2008)

Sulfonylurea chalcones 1–3/synthesized Normoglycemic rabbits In vivo All compounds: Hypoglycemic activity Compound-
3: The highest activity (38.73%) 5 mg/kg bw

(Rao et al., 2014)

30-C-b-dglucopyranosyldihydro chalcone (22)/
synthesized

STZ-induced diabetic rats In vivo Chalcone 22: ↓blood glucose (comparable to
metformin), 25 mg/kg bw

(Rawat et al., 2011)

(Continued on following page)
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(Orlikova et al., 2012). Isoliquiritigenin also reduced palmitic
acid–induced macrophage activation, leading to additional anti-
inflammatory activity (Watanabe et al., 2016). In human primary
endothelial cells Isoliquiritigenin prevented the translocation and
stimulation of NF-κB by hindering the phosphorylation and
subsequent decomposition of IkBα (Kumar et al., 2007).

Antimicrobial and Antifungal Activity
From the leaves and stems of Crotalaria madurensis Wight &
Arn., crotmadine (1) was isolated that exhibited antifungal
activity (Bhakuni and Chaturvedi, 1984). Five prenylated
flavonoids, including one new natural product (2–6), were
isolated from an ethanol extract of the leaves of Maclura
tinctoria (L.) D. Don ex Steud. All the isolated compounds
were evaluated against Candida albicans and Cryptococcus
neoformans. Compound 3 (isobavachalcone) was found to be

the most active against both the yeasts (ElSohly et al., 2001). The
crude methanolic extract of Zuccagnia angulata Hook. and Arn.
by assay guided fractionation led to the isolation of two chalcones
(7–8) as the compounds responsible for the antifungal activity
(Svetaz et al., 2004). The antifungal activity of the chalcones
(9–13), extracted from the methanol extract of the leaves of
Artocarpus nobilis Thwaites, showed potent fungicidal activity
(Jayasinghe et al., 2004). A new dimeric chalcone (14) isolated
from the fresh whole uncrushed fruits of Mallotus philippinensis
var. pallidus Airy Shaw was evaluated for antifungal susceptibility
with good results (Kulkarni et al., 2014). The extracted
compounds from Zuccagnia punctata Cav. were found to be
efficacious as inhibitors of Candida species (Gabriela et al., 2014).
In a recent study, the antifungal activity of 40 synthetized
chalcones and analogs (20–59) was analyzed. Chalcones with
different substituents showed to be active against different tested

TABLE 1 | (Continued) Antidiabetic activities of chalcones: in vitro and in vivo preclinical pharmacological studies.

Chalcones/source Experimental
model/method

Type of
study

Results/mechanisms Ref

2′, 4′- dihydroxy-4-methoxydihydrochalcone (DMC-
2)/synthesized

HFD obese C57BL/6J male
mice

In vivo ↓blood glucose (comparable to metformin)
200–300 mg/kg bw

(Ribnicky et al.,
2009)

Chalcones (1–4)/natural from Broussonetia
papyrifera (L.) L’Hér. Ex vent

α-Glucosidase inhibitory assay In vitro Chalcones 1: ↓α-glucosidase, IC50 � 5.3 μM
Chalcones 2: ↓α-glucosidase, IC50 � 11.1 μM

(Ryu et al., 2010)

Chalcones (5a-r), (4a-e), (3a-e)/synthesized HFD sucrose STZ-induced
diabetic rats

In vivo Chalcones 5a, g, m, o, p, r Anti-hyperglycemic:
↓blood glucose level 100 mg/kg bw

(Satyanarayana
et al., 2004)

Chalcone-6ʹ-hydroxy-2ʹ,3,4-trimethoxy-4ʹ-O-β-D-
glucopyranoside (1)/natural from Pouzolzia rugulosa
(wedd.) acharya and kravtsova

Alloxan-induced diabetic mice In vivo Hypoglycemic activity 100, 200, 500 mg/kg bw (Semwal et al.,
2009)

1-{4-[(2E)-3-(substituted phenyl) prop-2- enoyl]
phenyl}-3-(substituted phenyl”) urea (2a-d), 3(a-c)/
synthesized

STZ-induced diabetic Rats In vivo Anti-hyperglycemic: ↓blood glucose level doses of
compounds 2(a-d) and (a-c) 35 mg/kg bw

(Sengupta et al.,
2017)

Chalcone derivatives (1–20)/synthesized α-Amylase, α-glucosidase
β-amylase inhibitory assays

In vitro Chalcone 20: ↓α-glucosidase IC50 � 0.4 μM, non-
competitive inhibition

(Seo et al., 2005)

Trihydroxychalcone derivatives/synthesized C2C12 myotubes cells HFD
diabetic C57BL/6 mice

In vitro
In vivo

Chalcone 13: ↑AMPK→ ↑ AMP-activated
C50 � 10 μmol/L protein kinase; ↑glucose tolerance,
↑ muscle FAO, ↓fat in skeletal muscles, liver
30 mg/kg bw

(Shin et al., 2018)

Chalcone-based aryloxypropanolamines (5a-n)/
synthesized

HFD sucrose and STZ-induced
diabetic rats

In vivo Anti-hyperglycemic: ↓blood glucose level (Shukla et al., 2007)

Chalcone-based aryloxy-propanolamines3, 9(a, b),
10/synthesized

HFD sucrose and STZ-induced
diabetic rats

In vivo Chalcone 9a: ↑glucose tolerance in sucrose HFD
sucrose feeded rats Chalcones 3, 9a, 9b: ↑
postprandial hyperglycaemia in STZ-induced
diabetic rats 100 mg/kg bw

(Shukla et al., 2017)

3′, 5′-digeranylated chalcone (16)/synthesized α-Glucosidase inhibitory assay In vitro ↓α-glucosidase, interaction chalcone 16 and
α-glucosidase’s IC50 � 0.90 μM

(Sun et al., 2015)

Prenylchalconaringenins (1) and (2)/natural α-Amylase, α-glucosidase
inhibitory assays STZ-induced
diabetic mice

In vitro
In vivo

3′-Geranylchalconaringenin (2) ↓α-amylase,
IC50 � 20.46 μM ↓ α-glucosidase, IC50 � 1.08 μM
↓postprandial blood glucose, ↓TG, ↓cholesterol
60 mg/kg bw

(Sun et al., 2017)

Chalcones (2a, 2b, 2c)/synthesized STZ-induced diabetic Rats In vivo Chalcone 2a: ↓blood glucose level, anti-
hyperglycemic in diabetic rats Chalcone 2c: ↓blood
glucose level in normoglycemic rats 100 mg/kg bw

(Tajammal et al.,
2017)

Chalcone units of conjugates/synthesized α-Glucosidase inhibitory assay In vitro All chalcones: ↓α-glucosidase Chalcone 1b:↑
inhibitory activity IC50 � 3.2 μM

(Tang et al., 2014)

2ʹ,4ʹ-dihydroxy-6ʹ-methoxy-3ʹ,5ʹ-dimethylchalcone
(DMC)/natural from Cleistocalyx operculatus (roxb.)
merr. and L.M.Perry

α-Amylase inhibitory assay In vitro DMC: ↓ pancreatic α-amylase IC50 � 69 μM (Zhang and Lu,
2012)

Chalcone derivatives (13a-h), (19a-h)/synthesized STZ-induced diabetic Mice In vivo Chalcones 13e, 13g, 19f; ↓TG, ↓TC, ↓Glu
Chalcones 13e,19f: ↑AMPK, ↑PPARα 50 mg/kg bw

(Zhu et al., 2018)

Abbreviations and symbols: ↑, increased; ↓, decreased; STZ, streptozotocin; MD, molecular dynamic simulations; HFD, high fructose diet; GLUT-4, glucose transporter type 4; LKB1, liver
kinase B1; AMPK, AMP-activated protein kinase; PPARα, peroxisome proliferator-activated receptors; BW, body weight.
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fungi probably by inhibiting the biosynthesis of one or both
polymers of the fungal cell wall (Lopez et al., 2001). A large series
of chalcones were synthesized and studied for antifungal activity
against Candida albicans; the chalcones (60–64) exhibited
promising anti-candidal activities (Batovska et al., 2007).

As part of ongoing studies in developing new antimicrobials,
ten new thiazole-based chalcones (77–86) were synthesized and
tested for their in vitro antifungal properties. These possessed
modest activity against all the fungal species tested and were
being less active than ketoconazole and bifonazole (Liaras et al.,
2011). The chromonyl chalcones (87–88) were used as
intermediates for the synthesis of new bioactive pyrazoline

derivatives (89–94) under green condition. The antifungal and
antimicrobial activity was tested by disk diffusion assay. The
maximum inhibition was observed by chalcones 84 and 89
against S. aureus (Siddiqui et al., 2012). Using the agar cup-
plate method, the antimicrobial activities of the synthesized
compounds (95–106) were screened in vitro. The results
exhibited promising antifungal activity and antibacterial
activity (Prasath et al., 2013). Compound 107 was evaluated
for its antibacterial properties and showed maximum zone of
inhibition against S. aureus and P. aeruginosa (Bhale et al., 2013).
A series of a-triazolyl chalcones were synthesized (108–121), and
the synthesized compounds showed potent antibacterial activity

TABLE 2 | Anti-inflammatory activities of chalcones.

Chalcones/source Mechanism Results Ref

5′-Chloro-2′-hydroxy-4′6′-dimethyl-3, 4, 5 -Trimethoxy-chalcone/synthesized ↓ COX-1 ↓ COX-2
↓ TNF-α

IC50 � 87.6 µM IC50 � 88.0 µM
IC50 � 5–10 µM

(Bano et al., 2013)

3-(5-bromo-1H-indol-3-yl)-1-(4-cyanophenyl) prop-2-en-1-one/synthesized ↓ COX-1 ↓ COX-2 IC50 � 23.2 ± 0.5 μg/ml
IC50 � 27.1 ± 2.5 μg/ml

(Özdemir et al., 2015)

(5-Methoxy-1H-indol-3-yl)-1-(4-(methylsulfonyl) phenyl) prop-2-en-1-one/
synthesized

↓ COX-1 IC50 � 24.5 μg/ml no effect on
COX-2

(Özdemir et al., 2015)

Hydroxy-3,4,6-trimethoxychalcone/natural from Toussaintia orientalis verdc ↓ COX-1 IC50 � 9565 μg/ml no effect on
COX-2

(Nyandoro et al., 2012)

Licochalcone A/natural from Glycyrrhiza inflata batalin ↓ COX-1 ↓ COX-2 IC50 � 0.94 μg/ml IC50 � 1.93 μg/ml (Okuda-Tanino et al., 2017)
(E)-3-(4-((ethylamino)methyl)-phenyl) -1-(5-methylfuran-2-yl)prop-2-en-1-one/
synthesized

↓ COX-1 ↓ COX-2 IC50 � 25.85 μg/ml IC50 �
10.08 μg/ml

(Jantan et al., 2014)

Ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one/synthesized ↓ COX-2 IC50 � 0.05 μg/ml no effect on
COX-1

(Farzaneh et al., 2018)

(E)-4-methyl-N-((4-(3-(3,4,5 trimethoxyphenyl) acryloyl)phenyl)-carbamoyl)
benzenesulfonamide (Me-UCH5)/synthesized

↓ COX-2 IC50 � 0.06 μg/ml no effect on
COX-1

(Araico et al., 2006)

(E)-1-(2,6-dimethoxyphenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one/
synthesized

↓ PGE2 IC50 � 0.6 µM (Rojas et al., 2002)

(E)-1-(2,5-dimethoxyphenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one/
synthesized

↓ PGE2 IC50 � 0.7 µM (Rojas et al., 2002)

3,4,5-Trimethoxy-4′-fluorochalcone/synthesized ↓ PGE2 IC50 � 0.033 µM (Rojas et al., 2003b)
1-[6-(3,7-dimethyl-octa-2,6-dienyl)-5,7-dihydroxy-2,2-dimethyl-2H-chromen-8-
yl]-3-(4-hydroxy-phenyl)- propanone/natural Mallotus philippinensis

↓ PGE2 IC50 � 7.6 µM (Daikonya et al., 2004)

3-(3,4-dihydroxy-phenyl)-1-[6-(3,7-dime-thyl-octa-2,6-dienyl)-5,7-dihydroxy-2,2-
dimethyl-2H-chromen- 8-yl]-propenone/natural Mallotus philippinensis

↓ PGE2 IC50 � 9.5 µM (Daikonya et al., 2004)

1-[5,7-dihydroxy-2-methyl-6-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-2H-
chromen-8-yl]-3-(3,4- dihydroxy-phenyl)-propenone/natural Mallotus
philippinensis

↓ PGE2 IC50 � 38.6 µM (Daikonya et al., 2004)

Broussochalcone A/natural from Broussonetia papyrifera (L.) L’Hér. Ex vent ↓ PGE2 IC50 � 11.3 µM (Chen et al., 2017)
Isobavachalcone/natural from Cullen corylifolium (L.) medik ↓ PGE2 IC50 � 1.6 ± 0.11 µM (Kim et al., 2018)
Bavachromene/natural from Cullen corylifolium (L.) medik ↓ PGE2 IC50 � 2.4 ± 0.18 µM (Kim et al., 2018)
Kanzonol B/natural from Cullen corylifolium (L.) medik ↓ PGE2 IC50 � 2.2 ± 0.21 µM (Kim et al., 2018)
(3-(2-Hydroxyphenyl)-1-(thiophene-3-yl)prop-2-en-1-one) (TI-I-174)/synthesized ↓ PGE2 IC50 � 5.75 µM (Kim et al., 2014)
2-(3-(3,4-dimethoxyphenyl)propyl)-5-methoxyphenol/synthesized ↓ PGE2 IC50 � 6.5 µM (Vijaya Bhaskar Reddy

et al., 2017)
(E)-1-(4-hydroxy-3-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one/
synthesized

↓ PGE2 IC50 � 4.19 µM (Hara et al., 2014)

(E)-1-(3-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one/synthesized ↓ PGE2 IC50 � 2.88 µM (Hara et al., 2014)
2′-methoxy-3,4-dichlorochalcone/synthesized ↓ PGE2 IC50 � 7.1 µM (Kim et al., 2007)
2′-hydroxy-6′-methoxychalcone/synthesized ↓ PGE2 IC50 � 9.6 µM (Kim et al., 2007)
2′-hydroxy-3-bromo-6′-methoxychalcone/synthesized ↓ PGE2 IC50 � 7.8 µM (Kim et al., 2007)
2′-hydroxy-4′,6′-dimethoxychalcone/synthesized ↓ PGE2 IC50 � 9.6 µM (Kim et al., 2007)
2′, 5′, -dihydroxy-4-chloro-dihydrochalcone/synthesized ↓ PGE2 IC50 � 4.0 ± 1.5 µM (Huang et al., 2001)
4-hydroxylonchocarpin/natural from Psoralea corylifolia L ↓ PGE2 IC50 � 10.2 µM (Lee et al., 2005)
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and antifungal activity (Yin et al., 2014). A new series of pyrazine
analogs of chalcones have been tested against fungal strains. The
results showed that the compounds were inactive or only weekly
active against most strains (Kucerova-Chlupacova et al., 2015). In
another study, a series (132–179) of isatin–ferrocenyl chalcone and
isatin–ferrocene conjugates were synthesized and were evaluated for
their inhibitory activities against T. vaginalis. The compounds
exhibited 100% growth inhibition (Singh et al., 2018). In another
study, three chalcones, diuvaretin, uvaretin, and isouvaretin, were
investigated on their antibacterial activity, and the culture inhibition
was only observed for Gram-positive germs (Koudokpon et al.,
2018). A series of ten chalcones and five new
dihydrochromane–chalcone hybrids (189–203) were synthesized,
and their antifungal activity was evaluated in vitro, and only two
compounds had similar antifungal activity to that of the positive
control (Mellado et al., 2019). A series of five fluorinated chalcones
(204–208) were evaluated for their antibacterial activity against
Gram-positive and Gram-negative pathogenic bacterial strains
using the agar diffusion method. The results showed that the
compounds exhibited broad-spectrum activity against these
pathogens (Amole et al., 2019).

Antiparasitic Activity
Antileishmanial Activity
The in vitro antileishmanial activity of chalcones was evaluated by
several studies (Torres-Santos et al., 1999; Salem and Werbovetz,
2005; Salem and Werbovetz, 2006; Lima et al., 2016).

Licochalcone inhibited the growth of both Leishmania major
and Leishmania donovani promastigotes and amastigotes and
reduced the infection rate of human peripheral blood monocyte-
derived macrophages (Chen et al., 1993). Adunchalcone
displayed 50% effective concentrations against the
promastigote forms of Leishmania (L.) amazonensis, L (V.)
braziliensis, L (V.) shawi, and L (L.) chagasi, respectively (Dal
Picolo et al., 2014). In another study, chalcones obtained
Psorothamnus polydenius (S.Watson) Rydb., and exhibited
leishmanicidal properties (Salem and Werbovetz, 2005). The
chalcone 2,6′-Dihydroxy-4’-methoxychalcone (DMC) showed
significant activity against promastigotes and intracellular
amastigotes of Leishmania amazonensis (Torres-Santos et al.,
1999). Many other chalcone-derived plants displayed varying
degrees of leishmanicidal activity such as isoliquiritigenin (Salem
andWerbovetz, 2006), chalcone from Lonchocarpus xuul Lundell

TABLE 3 | Antileishmanial activity of chalcones.

Chalcones/source Type of study Tested effects Parasite Ref

Licochalcone/natural In vitro L. donovani
promastigotes
amastigote form of L.
major

IC50 � 2.4 μg/ml (Chen et al., 1993)

2′,6′-dihydroxy-4′-methoxychalcone (DMC, 2)/
natural

In vitro L. amazonensis
promastigotes

Damages of cell ultrastructure
IC50 � 50 μg/ml: Damage to
amastigote mitochondria IC50 � 40 μg/ml:
Damage to promastigote mitochondria

(Torres-Santos et al.,
1999)

Dihydrochalcones, 2′,6′-dihydroxy-4′-
methoxydihydrochalcone 4/natural

In vitro L. infantum
promastigotes

IC50 � 15.30 μg/ml (Hermoso et al., 2003)

2’,6’,4-trihydroxy-4′-methoxydihydro chalcone (5)/
natural

In vitro L. tropica promastigotes
L. infantum
promastigotes

IC50 � 3.82 μg/ml IC50 � 6.35 μg/ml (Hermoso et al., 2003)

Chalcones from Psorothamnus arborescens (A.Gray)
barneby/natural

In vitro L. donovani amastigotes IC50 � 5.0 μg/ml (Salem and Werbovetz,
2005)

Isoliquiritigenin/natural In vitro L. donovani amastigotes IC50 � 5.30 μg/ml (Salem and Werbovetz,
2006)

Chalcone from Lonchocarpus guatemalensis benth/
natural

In vitro L. braziliensis
promastigotes

IC50 � 10 μg/ml (Borges-Argaez et al., 2007)

Chalcone-triclosan hybrids/semisynthetic In vitro L. panamensis IC50 � 9.4 ± 1.3 μM (Otero et al., 2014)
2′,4′-dihydroxychalcone 35/synthesized In vitro L. amazonensis

promastigotes
IC50 � 0.4 μM (Passalacqua et al., 2015)

Methoxychalcones/synthesized In vitro L. braziliensis
promastigote

IC50 < 10 μM (Bello et al., 2011)

(1E,4E)-1,5-bis(3,4,5-trimethoxy-phenyl)-penta-1,4-
dien-3- one/synthesized

In vitro L. (Viannia) braziliensis IC50 � 1.38 ± 1.08 μM (de Mello et al., 2014)

(1E,4E)-1,5-bis(phenyl)-penta-1,4-dien-3-one/
synthesized

In vitro L. (Viannia) braziliensis IC50 � 5.88 ± 1.35 μM (de Mello et al., 2014)

(2E)-1-phenyl-3-(3,4,5-trimethoxy-phenyl)-prop-2-
en-1- one/synthesized

In vitro L. (Viannia) braziliensis IC50 � 6.36 ± 2.04 μM (de Mello et al., 2014)

(2E)-1-(4-methoxy-phenyl)-3-(3,4,5-trimethoxy-
phenyl)- prop-2-en-1-one/synthesized

In vitro L. (Viannia) braziliensis IC50 � 5.69 ± 0.20 μM (de Mello et al., 2014)

Chalcone 22 Chromenochalcones/synthesized In vivo L. donovani/hamster
model

50 mg/kg/day→↓parasites 48.53 ±
10.43% on day 7 post treatment

(Gupta et al., 2014)

Chalcone 37 Chromenochalcones/synthesized In vivo L. donovani/hamster
model

50 mg/kg, for10 days→ ↓parasites
(83.32 ± 12.37%)

(Gupta et al., 2014)

Chalcone-triclosan hybrids/semisynthetic In vitro L. panamensis IC50 � 9.4 ± 1.4 μg/ml (Otero et al., 2014)
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(Borges-Argaez et al., 2007), chalcones from Calea uniflora Less
(family Compositae) (Lima et al., 2016), and sulfonamide 4-
methoxychalcone derivatives (Andrighetti-Fröhner et al., 2009).
A series of oxygenated chalcones demonstrated remarkable
antileishmanial activity (Liu et al., 2003). The compound
derived from triclosan was evaluated for antileishmanial
activity against L (V) panamensis amastigotes, and the
compound was found to be active against Leishmania parasites

(Otero et al., 2014). The compounds of methoxychalcones and
another synthetic chalcone, 2’,4′-dihydroxychalcone displayed
potent in vitro antileishmanial activity (Bello et al., 2011;
Passalacqua et al., 2015). Also, chalcones (1–4) displayed
potent leishmanicidal activity via reducing the infection index
of macrophages significantly (De Mello et al., 2014).

In vivo, licochalcone A has completely prevented lesion
development in L. major–infected mice (Chen et al., 1994;

TABLE 4 | Antimalarial activity of chalcones.

Chalcones Source Method Type
of

study

Parasite Effects Ref

Bartericin A1 Natural Culture W2 strain of P.
falciparum

In vitro P. falciparum IC50 � 2.15 ± 0.02 μM (Ngameni et al.,
2007)

Bartericin B2 Natural Culture W2 strain of P.
falciparum

In vitro P. falciparum IC50 � 19.27 ± 0.06 μM (Ngameni et al.,
2007)

Stipulin 3, 4 Natural Culture W2 strain of P.
falciparum

In vitro P. falciparum IC50 � 5.13 ± 0.04 μM (Ngameni et al.,
2007)

Hydroxylonchocarpin 4 Natural Culture against the W2 strain
of P. falciparum

In vitro P. falciparum IC50 � 3.36 ± 0.07 μM (Ngameni et al.,
2007)

Isobavachalcone 5 Natural Culture against the W2 strain
of P. falciparum

In vitro P. falciparum IC50 � 19.00 ± 0.02 μM (Ngameni et al.,
2007)

Kanzonol B Natural Culture against the W2 strain
of P. falciparum

In vitro P. falciparum IC50 � 9.63 ± 0.04 μM (Ngameni et al.,
2007)

Cajachalcone Natural The bioassay-guided
fractionation of methanol
extract of C. cajan leaves

In vitro P. falciparum IC50 � 2.0 µg/mL (Ajaiyeoba et al.,
2013)

Xanthohumol and seven derivatives Semi -
Synthetic

— In vitro P. falciparum IC50 � 8.4 ± 0.3 μM (poW)
IC50 � 24.0 ± 0.7 μM (Dd2)

(Frölich et al.,
2009)

Sulfonamide chalcone derivatives Synthetic Culture of P. falciparum
parasites

In vitro P. falciparum IC50 > 10 μM (Domínguez
et al., 2005)

Sulfonamide chalcone derivatives Synthetic b-hematin formation In vitro P. falciparum IC50 � 0.48 μM (Domínguez
et al., 2005)

Quinolinyl chalcones derivatives Synthetic Culture of P. falciparum
parasites

In vitro P. falciparum IC50 � 19.0 μM (Domı́nguez
et al., 2001)

Hlorovinyl sulfone-like chalcone derivatives Synthetic Claisen–Schmidt
condensation

In vitro P. falciparum IC50 � 0.025–10 mM (Dominguez
et al., 2009)

Phenylurenyl chalcone Synthetic - In vitro P. falciparum IC50 � 1.76 μM (Domínguez
et al., 2005)

-(2,5-dichlorophenyl)-3-(4-quinolinyl)-2-
propen-1-one

Synthetic - In vitro P. falciparum IC50 � 200 nM (Li et al., 1995)

Chloroquinoline Synthetic Claisen–Schmidt
condensation

In vitro P. falciparum IC50 � 31.54 mM (Hayat et al.,
2011)

1-(4-Benzimidazol-1-yl-phenyl)-3-(2, 4-
dimethoxy-phenyl)-propen-1-one

Synthetic Claisen–Schmidt
condensation

In vitro P. falciparum IC50 � 1.1 μg/ml (Yadav et al.,
2012)

Licochalcone Synthetic — In vitro P. falciparum IC50 � 1.43 μg/ml (Yadav et al.,
2012)

Acridinyl chalcone derivatives (1a–k) Synthetic Noncatalyzed nucleophilic
aromatic

In vitro p falciparum IC50 � 2 mg/ml (Tomar et al.,
2010)

Chalcone-AZT hybrid series 7 and
9Acetylenic chalcones (1a–c, 2a–e)
Chalcone-chloroquinoline hybrid
compounds (8 and 10)

Synthetic
-

— In vitro p falciparum Compound 8b was the most active,
submicromolar IC50 values against the
D10, Dd2 and W2 strains of P.
falciparum.

(Guantai et al.,
2010)

Alkoxylated Chalcones Synthetic - In vitro P. falciparum IC50 � 6.5 mM (Nowakowska,
2007)

4-Chloro-20,40-dihydroxychalcone Synthetic - In vitro P. falciparum IC50 � 12.3 mM (Nowakowska,
2007)

Hydroxylated chalcones Synthetic - In vitro P. falciparum IC50 � 20 mM (Nowakowska,
2007)

Phenylurenyl chalcone derivatives Synthetic - In vitro P. falciparum IC50 � 1.75–10 mM (Nowakowska,
2007)

Xanthohumol Synthetic - In vitro P. falciparum IC50 � 8.2 mM IC50 � 24 mM (Nowakowska,
2007)
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Tajuddeen et al., 2018). Chromenochalcones also showed
antileishmanial potential in hamster (Gupta et al., 2014). Oral
administration of chalcone 3-nitro-2-hydroxi-4,6-
dimetoxychalcone (CH8) in the groups of animals infected
with either Leishmania infantum or Leishmania amazonensis
showed good effect (Sousa-Batista et al., 2018).

Table 3 summarizes the antileishmanial effects of chalcones
using in vitro and in vivo approaches.

Antimalarial Activity
Naturally occurring chalcones have demonstrated promising potencies
after being tested in vitro against Plasmodium falciparum. The
compounds bartericin A, stipulin 3, 4, and hydroxylonchocarpin
demonstrated particular antimalarial potential with relatively low
doses (Ngameni et al., 2007). Other chalcones with antimalarial
activity proved in vitro: cajachalcone (Ajaiyeoba et al., 2013),
xanthohumol (Frölich et al., 2009), sulfonamide chalcone derivatives
(Domínguez et al., 2005), sythesized novel chlorovinyl sulfone-like
chalcone derivatives (Dominguez et al., 2009), quinolinyl chalcones
synthesized (Domı́nguez et al., 2001), various 1,3-diaryl-2-propenones
(chalcone derivatives) (Geyer et al., 2009), and chalcone
chloroquinolines such as chloroquine and quinine (Hayat et al.,
2011). Among the 27 novel chalcone derivatives synthesized, only
one compound was found to be the most antimalarial active (Yadav
et al., 2012).

Chalcone derivatives administrated intraperitoneally to the
Plasmodium yoelii–infected mice model showed significant
inhibition of these strains (Tomar et al., 2010).

Table 4 summarizes the principal studies carried out on the
antimalarial effect of natural and synthetic chalcones.

Cytotoxic and Antiproliferative Activity
Chalcones (natural and derivatives) displayed potent
antiproliferative consequences in both initial as well as
developed ovarian cell carcinoma (De et al., 1995) and also in
stomach carcinoma HGC-27 cell (Shibata, 1994) (Table 5).

Chalcones with piperazinemoiety have demonstrated different, as
well as, crucial pharmacological activities counting antihistamine
(Rahaman et al., 2010), antioxidant, anti-inflammatory (Bandgar
and Gawande, 2010), anti-infective (Tomar et al., 2007), and
anticarcinogenic properties (Filosa et al., 2007). In the light of
piperazine moiety, biological activity has also been reported and
encouraged.

Chalcones with piperazine moiety were created, and their
in vitro anti-carcinoma–producing activity was observed
(Rahaman et al., 2010). New fragrant chalcones with in vitro
anti-carcinoma–producing property have also been recorded
(Viveka et al., 2014). In addition, Jurkat cell line of human
T-lymphocyte blood cancer along with HL-60 human blood
cancer cell lines is also targeted by diaryl chalcones. The
in vitro study was performed for ascertaining compound
activity in opposition to two breast carcinoma cell lines MCF-
7 (Chauhan et al., 2014) and T47D (Jeon et al., 2016). Table 6 The
result specified that all the compounds were dynamic but not
analogous with doxorubicin. However, it displayed some effects
against two breast carcinoma cell lines (Ugwu et al., 2015). In
another study, 25 chalcone-derived compounds were reported to
exhibit anticarcinogenic properties (Syam et al., 2012). Recent
research conducted on 46 different chalcones to measure exact
antiproliferative activities against the human tumor necrosis
factor–associated programmed cell death–inducing ligand
(TRAIL) against cervical (HeLa), liver (HepG2), breast (MCF-
7, MDA-MB-231), ovarian (Caov-3), nasopharyngeal (CNE-1),
erythromyeloblastoid (K-562), lung (A549), colorectal (HT-29),
T-lymphoblastoid carcinoma cells (CEM-SS), and common
human embryonic kidney (HEK-293) cells.

Chalcone derivatives with enone and thiophene rings also
possess activity against tubulin assembly and colchicines; they
bind to tubulin of K562 cells (chronic myeloid leukemia; CML)
and inhibit their growth on G2/M stage of the cell cycle
(Romagnoli, 2008). In addition, those thiophene chalcone
derivatives inhibit human T-lymphocyte (Molt 4 and CEM)
and human cervix cancer (HeLa) cells. This research was
conducted on murine blood carcinoma (L1210), murine
mammary cancer (FM3A), human HeLa, Molt 4, and CEM
cells by taking 0.3–0.5 million cells/mL of culture medium.
After incubating the cells with testing compounds at 37°C for
2 days, cell number was counted by means of a Coulter counter.

Anticancer Potential of Chalcones
Cancer is one of the most feared diseases of the 21st
century—according to the 2012 Globocan report, 14 million
people are diagnosed with cancer each year and more than
8 million deaths are reported each year (Ferlay et al., 2013).
Because radiotherapy or chemotherapy has multiple adverse
effects, new molecular therapies are being tested for use in the

TABLE 5 | Cytotoxic and antiproliferative activity of chalcones.

Chalcones Source Type of study Effects Ref.

Chalcones with piperazine moiety. Synthetic In vitro (different cancer
cells)

Anticarcinogenic properties (Filosa et al., 2007)
(Rahaman et al., 2010)

Imidazoquinonyl chalcones and pyrazolines. Synthetic In vitro (HeLa cells) Anticarcinogenic properties (Viveka et al., 2014)
β-carboline based chalcones. Synthetic In vitro (MCF-7 cells) DNA fragmentation and apoptosis (Chauhan et al., 2014)
Heteroaromatic chalcones. Synthetic In vitro (T47D cells) Topoisomerases inhibitory and cytotoxic activity (Jeon et al., 2016)
Chalcone derived compounds replaced
acetophenone and replaced aldehyde.

Synthetic In vitro (MCF-7 cells) Apoptosis induction in MCF-7 cells with the involvement
of caspase-7, caspase-8, and caspase-9

(Syam et al., 2012)

Thiophene analogues of chalcones. Synthetic In vitro (K562 cells) Inhibition of Tubulin polymerization (Romagnoli, 2008)
Chalcone derived compounds Hsp90
inhibitors

Synthetic In vitro (H1975 and
MDA-MB-231 cells)

HSP90 inhibitory effect (Jeong et al., 2014; Oh and
Seo, 2017)

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 59265410

Salehi et al. Pharmacological Properties of Chalcones

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 6 | In vitro summarization of recent research on heteroaromatic chalcones (Jeon et al., 2016).

Tested cells lines

MDA-MB231 basal resembling (more invasive) human triple negative breast adenocarcinoma cell line.
MDA-MB468 human triple negative breast adenocarcinoma cell line originated from metastatic spot
T47D human breast ductal cancer cell line

Results

IC50 � 100 µM ↓TI1 > 60% IC50 � 100 µM ↓TI1 > 70% IC50 � 100 µM ↓TI1 > 60% IC50 � 100 µM ↓TI1 < 5%
↓TII2 > 90% ↓TII2 > 90% ↓TII2 > 90% 0% inhibition of TII
↓T47D carcinoma cells proliferation ↓activity against all cell lines comparing

with others three chalcones
↑anti-proliferative activity against
MDA-MB468

↓T47D carcinoma cell proliferation IC50 � 3.85 µM
↑antiproliferative effect (control camphothecin)
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treatment of solid tumors and blood cancers (Ahmad Farooqi
et al., 2017; Salehi et al., 2019e). Targeted molecular therapy uses
the patient’s genetic information to determine which molecules
can act most effectively in concerning to the type of diagnosed
cancer (Zajac et al., 2016; Žiberna et al., 2017; Moosavi et al.,
2018). Thus, heat-shock proteins 90 (HSP90) inhibitors open new
perspectives in cancer treatment by destabilizing proteins by
which cancer cells survive and multiply (tumorgenesis)
(Amolins and Blagg, 2009). Recent studies from last years
have shown that synthetic chalcones can have a HSP90
inhibitory effect (Jeong et al., 2014; Oh and Seo, 2017). Several
phase II clinical trials of new anticancer molecules that have two
hydroxyl groups at positions 1,3 revealed inhibition of
interactions between HSP90 and patients’ proteins through
binding of these molecules to the ATP site in HSP90 (Butler
et al., 2015). Maybe in the future, phase III clinical trials will be
conducted to support the anticancer potential of chalcones and
their derivatives.

Neuroprotective Activity
A research has been conducted on 10 different chalcones, out of
which two have nearly similar activity as of diazepam:
isoliquiritigenin (ISL, 2’,4’,4-trihydroxychalcone) and butein
(BUT, 2’,4’,3,4,tetrahydroxychalcone). This research based on
outcomes of chalcones on different replacements, investigated
in animal models for instance open field experiment, equine
protozoal myeloencephalitis test, rotarod performance, and grip
analysis. These experiments are typical models for screening
CNS actions giving information regarding tranquilizing or sleep
inducing, psychomotor performance, anxiety, and muscle-
relaxant effects (Tsatsakis A. M. et al., 2019). The kinetic
study of ISL to monoamine oxidase-A indicated that it
merged to variable positions of the enzyme, independent of
the pre-binding of serotonin (Tan et al., 2000). In the wide-
ranging perception, reasonably lipophilic medicines traverse the
blood–brain barrier (BBB) by submissive diffusion (Salehi et al.,
2020c; Sharifi-Rad et al., 2020d). Opposing molecules are
usually poor central nervous system agents, except they pass
through dynamic transport across the central nervous system
(Pajouhesh and Lenz, 2005; Salehi et al., 2020a). Hence, it can be
approximated that they are able to traverse the BBB and attain
their target (Di et al., 2003; Calina et al., 2020; Sharifi-Rad et al.,
2020e). Chalcones one, nine, fourteen, fifteen, and sixteen with
fine affinity for the BZD binding positions of the GABA category
A receptors, chalcones one and five with attraction for the 5-
hydroxytryptamine1A receptor, and compounds six and twelve
for the µ-opioid receptor were preferred to be experimented as
antidepressants, anti-anxiety agents, and against the sensation
and perception of pain in extensively applied pharmacological
experiments in rats (Salehi et al., 2019c). During the tail
suspension experiment, chalcone one demonstrated
antidepressant-like activity in rodents, while compound six
demonstrated action against sensations and perceptions of
pain in an acute chemical stimulated nociception assessment.

The new fifty-methyl-twenty-hydroxy-thirty-nitrochalcone
exhibited marginal and central activities against perceptions
and sensations of pain either in acute thermal or chemical

nociception experiments. According to the consequences
recapitulated, plain chalcone derived compounds are favorable
compounds for the discovery and growth of new central nervous
systemmedicines and contain an encouraging scaffold in medical
chemistry for the evolution of medicines and for the management
of pain, depression, and anxiety (Dominguez et al., 2009).

CHALCONES IN CLINICAL TRIALS

Chalcones in Treatment of Chronic Venous
Insufficiency
Chronic venous insufficiency (CVI) is a clinical syndrome that
results from chronic disorders of venous circulation from the
lower limb level. The main symptoms in moderate stages are
heavy legs, tension in the lower limbs, varicose veins dilated,
followed in severe stages by swelling of the lower limbs, skin
changes, and the appearance of venous ulcer (Lichota et al., 2019).
A therapeutic option is represented by laser therapy,
sclerotherapy, and venoactive drugs (Ianosi et al., 2019). These
venoactive drugs are a heterogeneous group of substances from
plant or synthetic origin that modulate the venous tone,
attenuates the blood rheology, improves micro- and
macrocirculation, regulates capillary permeability, have anti-
inflammatory effects by inhibiting leukocyte–endothelial
interaction, and reduces the oxidative stress (Salehi et al., 2020b).

Recent clinical trials have shown the main role of two
chalcones hesperidin methylchalcone and hesperidin
trimethylchalcone in the treatment of chronic venous
disorders (Boyle et al., 2003) and varices of the trunk of the
internal saphenous vein, respectively (Weindorf and Schultz-
Ehrenburg, 1987). In a randomized open-label study, the
therapeutic effect of a mixture of hesperidin methyl chalcone,
Ruscus aculeatus with vitamin C compared to rutozide in patients
diagnosed with chronic venous insufficiency was investigated
(Beltramino et al., 2000). This clinical trial was conducted for
three months and included eighty patients divided into two
groups: the first group received the combination with
hesperidin methyl chalcone, and the second received only
rutoside. The signs and symptoms of chronic venous
insufficiency were evaluated initially and then monthly. From
the clinical point of view, a significant and lasting reduction of the
symptoms was obtained in the patients from the first group
treated with the mixture of chalcone and vitamin C compared to
the second group, treated only with rutozide (Beltramino et al.,
1999).

The mechanism of the venotonic effect of Ruscus and
hesperidin methylchalcone extract is exerted by a two-way
adrenergic mechanism: 1) direct effect as agonist of the
postjunctional alpha-adrenergic receptors of the smooth cell in
the vascular wall and 2) indirect effect expressed by increasing the
release of noradrenaline from the presynaptic vesicles
(Beltramino et al., 1999; Peralta et al., 2007; Gomes et al.,
2017). The dose–effect relationship in the single dose and the
respective role of each constituent of this combination with
hesperidin methylchalcone (150 mg), Ruscus aculeatus plant
(150 mg per capsule), and ascorbic acid (100 mg) on the
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venous tone were also demonstrated in a clinical study that
included 37 women with superficial venous insufficiency. It
has been shown that the effect of a capsule administered twice
daily is similar to the administration of two capsules daily in the
morning, and no adverse digestive effects have been reported.
Clinical efficiency consisted in improving the permeability of the
vascular walls, increasing the vascular tone, reducing the edema
and normalizing the blood circulation in the blood vessels
(Boccalon et al., 1998). Similar beneficial effect of hesperidin
methylchalcone (HMC) on lymphatic venous insufficiency in a
recent meta-analysis of some clinical trials has also been
demonstrated. The good tolerability and the reduced adverse
effects of the combination of HMC, Ruscus extract, and vitamin C
have led the specialists to propose their inclusion in the new
treatment guidelines for chronic venous insufficiency (Kakkos
et al., 2018).

In a randomized double-blind study, the pharmacological
effect of trimethyl hesperidine chalcone associated with Ruscus
extract and vitamin C was demonstrated in patients diagnosed
with femoral trunk varicose (Weindorf and Schultz-Ehrenburg,
1987). The study included fifty patients, divided into two groups:
one orally treated 14 days with this combination and the other
with placebo. In both the groups, the venous tone was evaluated
by plethysmography, both in motion and at rest. In the group
treated with trimethyl hesperidine chalcone associated with
Ruscus extract and vitamin C, the clinical signs were
significantly reduced (Weindorf and Schultz-Ehrenburg, 1987).

Chalcones in Treatment of Skin Conditions
Skin diseases are leading causes of morbidity with high prevalence
and incidence, affecting the patients’quality of life and being
associated with very important social, economic, and healthcare
costs (Ianosi et al., 2018; Scheau et al., 2020). This is why the
search for new treatment options in dermatology is one of the
most important research areas in both fundamental and clinical
science (Ianoşi et al., 2016; Sifaki et al., 2020).

Various clinical trials have evaluated the role of chalcones in
inflammatory skin conditions and one of the most investigated
substances was licochalcone A. An interesting study including
sixty-two women with persistent mild to moderate facial redness
(Weber et al., 2006) has evaluated skin compatibility and effect of a
skin care regimen containing licochalcone A with duration of
8 weeks. The topical products were very well tolerated, and the
results of the study showed significant improvements of erythema
and in quality of life of the patients. A subsequent study on 33 rosacea
patients showed that the skin care products with licochalcone A are
compatible with the standard topical treatment of the disease.

Another research has assessed the effects on sensitive skin of
licochalcone A in combination with 4-t-butylcyclohexanol
(Sulzberger et al., 2016). The authors have conducted a single-
blind, randomized study in order to evaluate subjective and
objective symptoms of skin sensitivity. The formulation
containing licochalcone A-rich licorice extract combined with
4-t-butylcyclohexanol showed a significant reduction of shaving-
induced erythema. It was suggested that the anti-inflammatory
effect of licochalcone A is induced by a significant reduction of
NFκB signaling and prostaglandin E2 (PGE2) secretion.

A recent randomized, prospective, investigator-blinded study
(Boonchai et al., 2018) has evaluated the effects of a moisturizer
containing 4-t-butylcyclohexanol and licochalcone A on eighty
patients with mild to moderate facial dermatitis. The chalcone
containing topical treatment has induced significant
improvements of clinical aspect, hydration of cutaneous tissue,
and transepidermal water loss as well as the patients’ subjective
evaluation. The results of facial moisturizer were compared with
those induced by 0.02% triamcinolone acetonide cream and even
if the topical corticoid treatment was associated with faster
improvement of patients’ symptoms, the chalcone containing
moisturizer showed better effects on skin hydration and
inflammation control.

A complex research including two clinical studies and several
in vitro experiments was conducted in order to evaluate the anti-
irritative effect of cosmetic formulations containing licochalcone
A (Kolbe et al., 2006). The prospective randomized vehicle-
controlled clinical trials enrolled a total of 57 healthy subjects,
45 of them being included in study using a post-shaving skin
irritation model and 12 volunteers taking part in a UV-induced
erythema test. Even if in one model inflammation was induced by
impairment of skin barrier and in the second by UV-penetration
damage, in both studies, the topically applied licochalcone A-rich
licorice extract showed a highly anti-irritative effect, significantly
reducing erythema. The additional in vitro data emphasized
possible cellular and molecular mechanisms showing a strong
inhibitory effect of licochalcone A on pro-inflammatory
responses of different cell types such as granulocytes,
keratinocytes, dermal fibroblasts, and monocyte-derived
dendritic cells.

Moreover, licochalcone A has proved to be effective in scalp
disorders. The effect of a tonic solution containing licochalcone
A, among other active components, has been investigated in 30
subjects with dry and itchy scalp conditions and showed a
significant reduction of scalp dryness, itching, and
microinflammation (Schweiger et al., 2013). The role of
chalcones in the treatment of inflammatory skin conditions in
children is another important area of research. A randomized,
double-blind, split-side comparison study on 75 infants between
the age of 2 weeks and 1 year showed that a moisturizer
containing 0.025% licochalcone is equally effective as topical
1% hydrocortisone for the treatment of infantile seborrhoeic
dermatitis (Wananukul et al., 2013). The same research group,
in a multicenter randomized, prospective, split-side, double-blind
study, has evaluated the effect of a moisturizer containing
licochalcone A compared to 1% hydrocortisone topical therapy
in the treatment of childhood atopic dermatitis (Wananukul
et al., 2013). The study included 55 children with mild to
moderate lesions and showed that the moisturizer containing
licochalcone A significantly reduces the clinical severity of the
lesions and the transepidermal water loss, being equally effective
as topical corticosteroid treatment. Moreover, continuing the
treatment with licochalcone A moisturizer was able to stabilize
the clinical improvement and the skin barrier recovery. These
results are in accordance with data from a previous randomized,
controlled, investigator-blinded study (Udompataikul and
Srisatwaja, 2011).
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Chalcones are also evaluated as potential treatment options in
acne patients. A double-blinded, prospective, randomized,
vehicle-controlled clinical trial has investigated the tolerability
and effect of a moisturizer containing licochalcone A, L-carnitine,
and 1,2-decanediol as adjuvant treatment in topical therapy with
retinoids (Chularojanamontri et al., 2016). The study included
120 subjects with mild to moderate acne and showed a significant
reduction of total lesions in patients treated with the moisturizer
containing active substances. Moreover, they had less
inflammatory lesions and skin irritations.

Anti-aging medicine is another important area of research
in which chalcones are investigated (Sharifi-Rad et al., 2020b).
A double-blind, placebo-controlled trial including ninety-two
subjects showed that oral intake of Boesenbergia pandurata
extract containing panduratin A as bioactive compound for
12 weeks significantly increases skin hydration and gloss and
decreases wrinkling without any adverse symptoms,
suggesting a possible use of Boesenbergia pandurata extract
as a nutraceutical or nutricosmetic product (Kim et al., 2017).

BIOAVAILABILITY OF CHALCONES

Research on the bioaccessibility of chalcones from sources of food
are bounded, but experimented artificial chalcones have
accounted to contain broad ranges of biological activities
(Won et al., 2005). Although chalcones have an essential
position in the bio-production of flavonoids (Shirley, 1996)
and are familiar in a number of foods and drinks, like rooibos
tea or apples, there are unavailability of data on their
bioaccessibility in human beings.

The prenylated chalcone xanthohumol is the amplest chalcone
produced in hop cones. Throughout beer preparation, a huge
fraction of xanthohumol is changed to the related isomeric
prenylflavanone isoxanthohumol. Following administration of
xanthohumol to rodents by force feeding at extremely elevated
dosage (1 g/kg of body weight), linked metabolites were identified
in plasma. The most important metabolite, xanthohumol- 49-O-
glucuronide, attained its topmost concentration of 3.1 lmol/L 4 h
after administration. The maximum concentration of
unmetabolized xanthohumol was 10 times lower with the
similar Tmax of 4 h (Gerhäuser, 2005). One more rodent
study discovered only conjugates in plasma following oral
administration of xanthohumol however unsuccessful to
distinguish unmetabolized xanthohumol (Avula et al., 2004).

Conversely, these studies demonstrate that prenylated
chalcones are bioavailable, although their bioaccessibility
appears to be commonly low.

Another study explored the prospective accessibility of
flavanones in diversely processed Citrus sinensis (L.) Osbeck
juices by imitating stomach and small intestinal in vitro
digestion (Gil-Izquierdo et al., 2001).

In addition to showing the power of pasteurization and storage
on the substance of dissolvable flavanones, these researchers
detected that in vitro pancreatin intake of Citrus sinensis (L.)
Osbeck juice in a mild alkaline medium, imitating absorption in
the small intestine, converted fifty to sixty% of the dissolved

flavanones (primarily hesperidin) to chalcones (principally
hesperidin chalcone) (Cermak et al., 2009). Particularly the
poor dissolvability of a large number of chalcone compounds,
the bioequivalence effectiveness has not achieved the anticipated
intensities in preclinical assessments.

Therefore, the maximization of the physicochemical activities
will be one of the principal study routes of chalcone-dependent
compounds. For the objects of chalcone compounds, a number of
anticipated targets must be confirmed. Activity-dependent
protein outlining is a potent approach for recognition of target
that must be decided by considering each case individually
because of the properties of chalcone molecules (Zhuang et al.,
2017).

DISCUSSION

The results of our study confirmed the therapeutic potential of
chalcones. The limitations of this research result from the fact
that many meta-analyzes were included and not individual
studies. But this can be considered as a strong point because
recent meta-analyzes have summarized the most important
pharmacological effects in vitro and especially in vivo. Another
strength of this review is that the latest studies and clinical trials
on patients have been described, thus confirming the clinical
importance and positive prospects in medical therapy.

Natural and synthetic chalcones and their derivatives presented
antidiabetic effects, and the effect can be attributed mainly to
lowering of insulin secretion with potency similar to that of
hypoglycemic agents (ig Glipizide) (Jamal et al., 2009).
Numerous studies have reported the anti-inflammatory effects
of chalcones on several targets such as enzymes implication in
promoting inflammation process: cyclo-oxygenase, interleukins,
nitric oxide synthase, cell adhesion molecules (CAM), lipo-
oxygenase (LOX), and prostaglandins (PGs) (Salehi et al., 2020c;
Mititelu et al., 2020). The suppression and/or inhibition of cyclo-
oxygenase enzyme is a promising therapeutic way in the treatment
of inflammatory diseases (Salehi et al., 2019d; Sharifi-Rad et al.,
2020c). Many bioactive compounds, both natural and synthetic,
have been isolated and synthetized to develop anti-cyclooxygenase
activity (Salehi et al., 2019b; Padureanu et al., 2019; Sharifi-Rad
et al., 2020a). PGE2 and NO are among the inflammatory
mediators that promote inflammation in several diseases (Salehi
et al., 2019c; Salehi et al., 2020b). Consequently, the inhibition of
these mediators is strongly suggested as remedy for numerous
inflammatory diseases. (Mocan et al., 2014; Tsatsakis A. et al., 2019;
Toiu et al., 2019). Chalcones also have proved their ability to inhibit
NF-κB (nuclear factor kappa) which regulates the most important
factors involved in inflammatory process such as cytokines,
chemokines, and adhesion molecules (Salehi et al., 2019d; Salehi
et al., 2019a). Several studies have suggested the use of chalcones
and their derivatives target specifically NF-κB as an anti-
inflammatory therapeutic strategy (Chu and Guo, 2016).

Chalcones are natural products, produced by plants as a
natural defense mechanism against pathogens as fungi and
bacteria. Synthesized β-chlorovinyl chalcones exhibited
antifungal activity (Bandgar and Gawande, 2010). In general,
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the natural chalcones (synthesized or modified) are being
increasingly documented because of their interesting
antimicrobial activities and can be represented as promising
agents in the perspective of new antibiotic drugs discovery.
Some of the chalcones have been implicated in inhibition of
exoenzymes responsible for fungal invasion mechanisms, also
inhibiting biofilm and germ tube formation as in C. albicans.
They may affect the cellular cytoplasmic membrane and induce
cell apoptosis as it was noted in case of carvacrol (Zuzarte et al.,
2012). In addition, it was also reported that flavonoid compounds
as chalcones inhibit the growth of bacteria by acting on the
membrane potential which might affect the overall bacterial
metabolic activity, resulting in some biosynthetic pathway
inhibition, as demonstrated by the strong inhibition of DNA,
RNA, and protein synthesis (Dzoyem et al., 2013; Ungureanu
et al., 2017). Chalcones also showed to be a promising anticancer
potential because it induces selective cell death in carcinoma cells
with not upsetting regular cells (Syam et al., 2012) and
psychoactive and neuroprotective activities. (Brady et al., 2012).

OVERALL CONCLUSIONS AND FUTURE
PERSPECTIVES

The curiosity and attraction toward natural compounds are
increasing gradually because of the recognized favorable
consequences on numerous prevalent and general diseases like
carcinoma, allergic reactions, cardiovascular disease, infectious
diseases, parasitic diseases, type 2 diabetes mellitus, or diseases
of central nervous system. Starting from the ethnopharmacological
uses of chalcones, in this study, the most important in vitro and in
vivo biological activities such as antibacterial, antioxidant,
antineoplastic, cytotoxic, antiulcer, antidepressant, anxiolytic,
and anti-inflammatory were highlighted. Chalcones derivatives
have shown anticancer activity against a variety of cancer cell
lines, antibacterial activity against Gram-negative and Gram-
positive germs, and anti protozoal activity. Although conducted
in a small number, clinical studies of chalcones have shown a lack
of adverse effects in patients with chronic venous insufficiency, the

reduction of clinical signs and symptoms, and good plasma
concentrations. However, further clinical studies are needed to
fully understand the mechanisms of action at the cellular level and
to establish correlations between their structure and
pharmacological actions, especially anticancer activity.

Although they showed many interesting biological effects and
many preclinical experiments could be performed, their
mechanism of action is not entirely known. Being compounds
that could be synthesized relatively easily, in the future, it is
necessary to develop new synthesis methods that allow the
research of new biological properties, a deeper knowledge of
the molecular mechanisms of action, and especially the
identification of the target of the action. And so, this
successful story of the promising therapeutic effects of
chalcones to be applicable in the discovery of new drugs,
pharmaceutical forms, using modern strategies, especially new
nano-formulations in order to increase their bioavailability,
prolonged effect, or transport to the target of the action.
Further research and clinical trials can explore its
pharmacological actions, their interactions with other
compounds or medicines, and the level of toxicity it can cause.
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