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ABSTRACT 

This paper investigates the frequency response of 
microplates under electrostatic actuation. The microplate is 
parallel to a fixed ground plate. The electrostatic force that 
actuates the system is given by both Alternate Current (AC) 
and Direct Current (DC) voltages. The AC frequency is set to 
be near half natural frequency of the structure. Damping 
influence is also investigated in this paper. The method of 
investigation is Reduced Order Model. The effects of various 
parameters on the response of the structure are reported.  
 
INTRODUCTION 

In the past decade microelectromechanical systems have 
gained large popularity among the research community. These 
devices offer many benefits over other devices including cost 
effect manufacturing, size advantage, and low power 
requirements. These devices also have many different 
applications in various fields, the most popular application 
being sensors [1].  

In order to take advantage of the possible applications 
these devices can serve it is crucial to understand the behavior 
and phenomena occuring at the micro scale [2-10]. A very 
important phenomenon that needs to be understood is pull-in 
effect, where in the case of cantilevers the system experiences 
instability and collapses to the ground plate. Talebian et al. [2] 
examined the pull-in voltage and frequency response of an 
electrostatically actuated micro plate and the effect temperature 
has on the system. The paper uses the Kirchhoff thin plate 
theory to derive the equation of motion and linearizes it using 
the step-by-step linearization method (SSLM). The results 
obtained showed the change in pull-in voltage at different 
operating temperatures. The paper concludes that at colder 
operating temperatures the pull-in voltage is higher than at 
warmer temperatures. Aside from understanding the 
phenomena that occurs at the micro scale, it is also important to 
understand the behavior the system exhibits. Caruntu and 
Taylor [8] investigated the behavior of a MEMS resonator that 
was electrostatically actuated with soft AC and DC voltage. 

The electrostatic actuation sets the resonator into a nonlinear 
parametric resonance. The method of multiple scales (MMS) is 
used to model the resonator and the results are validated using 
reduced order model (ROM). The results obtained showed that 
with the DC voltage added the bifurcation point is shifted to 
higher amplitudes and lower frequencies.  Something else that 
is important to keep in mind when examining the behavior is 
the parameters affecting the system. Investigations of these 
parameters can determine how much of an impact they have on 
the overall system. Li et al. [11] examined an electrostatically 
actuated microplate under hydrostatic pressure. In their model 
they included both the effect of electrostatic force and 
hydrostatic pressure. An energy equivalent method was used to 
model the microplate and analyze the resonant frequency. Their 
results showed that for small amplitudes the resonant frequency 
can be decreased from the influence of electrostatic force and 
hydrostatic pressure. The results obtained were also validated 
using finite element method.  

In this paper the effect of AC and DC electrostatic 
actuation on a microplate is investigated. The reduced order 
model (ROM) method is used to investigate the influences of 
damping, AC and DC voltage.  
 
SYSTEM MODEL 
 The MEMS system consist of two parallel circular plates. 
The top plate is fixed from the edges and is deformable while 
the bottom plate (electrode) is rigid as shown in Fig. 1.     
 

              
 
Fig. 1. MEMS circular plate suspended above ground plate 
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DC voltage is between these two plates as well as AC 

voltage at a frequency near half natural frequency of the top 
plates. The AC voltage causes a parametric resonance of the top 
flexible plate. R is the radius of the circular plates, d is the gap 
length between the plates, and w is the dimensionless deflection 
of the top plate. The dimensionless equation of motion of 
axisymmetric vibrations of circular plates is given by 
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where t is the dimensionless time, r is the dimensionless 
position from the center of the plate, and w is the dimensionless 
deflection of the top plate given by 
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and where tandrw ˆ,ˆ,ˆ  are the corresponding dimensional 

variables. One chose to use OAOD δδ , in Eq. (1) due to the 
fact that OAOD δδ ,  are the dimensionless excitation force 
coefficient from the DC and AC voltage applied. The 
dimensionless parameters from Eq. (1) are μ the dimensionless 
damping coefficient, ODδ  and OAδ  are the dimensionless 
excitation force coefficients, and Ω  the dimensionless 
excitation frequency, given by 
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where ρ is density of plate material, h is the thickness of the 
plates, c1 is the damping coefficient, d is the distance between 
the plates, ε* is the permittivity of air, E is Young’s modulus of 
the material of the plates,  ν is the Poisson’s ratio of the 
material, and *Ω  the dimensional excitation frequency 
 As shown in Eq. (1), the electrostatic force acting on the 
circular plate is proportional to the square of cosine of the 
excitation frequency. Therefore the electrostatic force includes 
a component proportional to the cosine of double the AC 
frequency. In conclusion, when the system is actuated with an 
AC frequency near natural frequency of the plate, the 
electrostatic force experienced by the plate has a frequency near 
twice natural frequency of the plate, resulting in parametric 
resonance. 
 
REDUCED ORDER MODEL 
 The reduced order model (ROM) method is used to model 
the MEMS clamped circular plate. This method uses the 
undamped linear mode shapes of the plate based on the 
Galerkin procedure. The solution is assumed 
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where the number of terms N is finite, dimensionless 
displacement ),( trw  is a function of a time-dependent 
coefficient of displacement ( )twi  and the mode shape ( )riφ . 
The mode shapes satisfy the boundary conditions of fixed plate 
i.e. ( ) 01 =iφ  and ( ) 01 =′iφ , and the orthogonality conditions. 
 

( )
iiiiii rrr

φωφφφφ ′=′+′′−′′′+ 2
32

4 112     (5) 

∫ ⎩
⎨
⎧

=
≠

==
1

0
,1
,0

ji
ji

dzr ijji δφφ    (6) 

 
The partial differential equation of motion Eq. (1) is multiplied 
by 2)1( w−  to eliminate all displacement terms from the 
denominator.  The equation is then expanded and derives into 
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ROM can be used to model the system at any range of 
frequency. The AC frequency used in this paper is near half the 
natural frequency, the excitation frequency Ω  becomes 
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where σ is a detuning parameter. Applying Eq. (4) (5) and 
(6) into Eq. (1) results in  
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where n = 1,2,…N.  
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The resulting system of N  second order differential equations 
is then integrated using AUTO-07p software. The convergence 
of the responses based on the number of terms N is investigated 
for both amplitude-frequency response.   
 
RESULTS AND DISCUSSION 

The first seven dimensionless mode shape constants along 
with their corresponding natural frequencies are shown in Table 
1.  The system constants used by the equation of motion are 
shown in Table 2. Table 3 and Table 4 show the dimensional 
and the derived dimensionless system parameters used for 
numerical simulations.  

 
Table 1. Natural Frequencies of Clamped Circular Plates 
Mode 1 2 3 4 5 6 7 

Freq. 10.22 39.77 89.10 158.18 247.01 355.57 483.87 

 
Table 2. System Constants 
Permitivity of free space ε*  8.854e-12  C2/N/m2 
  
Table 3. Dimensional System Parameters 
Radius of plate    R    250.0   μm 
Initial gap distanc e  d  1.014   μm 
Plate thickness   h  3.01   μm 
Young's modulus   E  150.6   GPa 
Poisson's ratio   ν         0.0436 
Density of material  ρ  2330.0   kg/m3 
Damping    c1  1.962   Ns/ m3   
DC Voltage    VOD  0.1438   V                 
AC Voltage    VOA  2.035   V                 
 
 
Table 4. Dimensionless System Parameters 
Electrostatic constant (DC Volt.)  δOD  0.001 
Electrostatic constant (AC Volt.)  δOA  0.200 
Damping constant     μ  0.005     
 

The frequency response of the system is shown in Figure 2. 
The response is separated into two branches, left and right, 
where the solid represents the system in a stable state and the 
dashed lines represent the system in an unstable state (pull-in).  
One can notice the existence of two saddle-node bifurcation 
points one in lower frequency and lower amplitude, and another 
one in higher frequency and higher amplitude. Bifurcation 
points are points where the system changes stability.  

 

 
Fig. 2. Frequency response using 2 term ROM. The 
Bifurcation point is indicated by a dotted line. δ OD= 0.001, δ 
OA= 0.2, μ = 0.005. 

 
Figure 3 shows the influence of the AC voltage on the 

frequency response of the system. The right branch of the 
response does not change greatly as the AC voltage changes, 
while the left branch shifts significantly to lower frequencies. 
The increasing AC voltage causes a shift in the left branch of 
the response to lower frequencies which also increases the gap 
between the two branches. The amplitudes of the bifurcation 
points do not seem to be affected by the change in AC voltage.  

 

 
 
Fig. 3. AC effect on frequency response using 2 term ROM.  

    δ OD= 0.001 and μ= 0.005. 
 
Figure 4 shows influence of the DC voltage on the 

frequency response of the system. This figure shows a clear 
softening effect of the response as the voltage is increased. 
Unlike the AC voltage influence, DC voltage does affect both 
branches of the response. The right branch leans to towards 
lower frequency which decreases the gap between branches as 
the voltage is increased. The bifurcation point occurring at high 
amplitudes is also shifted to lower frequencies and amplitudes. 
The left branch is affected similarly like it was from AC 
voltage. Both bifurcation points are shifted to lower amplitudes.  
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Fig. 4. DC effect on frequency response using 2 term ROM.  

    δ OA= 0.2 and μ= 0.005. 
 
Figure 5 shows the influence of the damping on the 

frequency response of the system. As the damping increases, 
the bifurcation points get closer to each other until both 
branches coalesce. The damping effect on the response is 
unlike the voltage influence. At the highest damping 
considered, the system experiences linear behavior. There is a 
softening effect that can be seen as the damping is increased, 
even when the behavior becomes linear the response is leaning 
towards the left.  
 

 
Fig. 5. Damping effect on frequency response using 2 term 
ROM.    δ OD= 0.001 and δ OA= 0.2. 
 
A potential engineering application of this work is in the mass 
sensing area. Sensors can be designed to work at one fourth of 
the natural frequency of the structure. 
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