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Abstract

This paper deals with spectral type differential equations of the self-adjoint differential operator, 2r order:

L(2r)[Y ](x) = 1

�(x)

dr

dxr

(
�(x)�r (x)

drY (x)

dxr

)
= �rnY (x).

If �(x) is the weight function and�(x) is a second degree polynomial function, then the corresponding classical
orthogonal polynomials,{Qn(x)}∞n=0, are shown to satisfy this differential equation when�rn is given by

�rn =
r−1∏
k=0

(n − k)[�1 + (n + k + 1)�2],

where�1 and�2 are the leading coefficients of the two polynomial functions associated with the classical orthogonal
polynomials. Moreover, the singular eigenvalue problem associated with this differential equation is shown to have
Qn(x)and�rn as eigenfunctions and eigenvalues, respectively.Any linear combination of such self-adjoint operators
hasQn(x) as eigenfunctions and the corresponding linear combination of�rn as eigenvalues.
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1. Introduction

With important applications, orthogonal polynomials theory was developed during the 20th century.
Two major publications marked this evolution, Szegö[15] and Chihara[5]. Recent considerations of
orthogonal polynomials and their differential equations have been published. Krall[11] gave necessary
and sufficient conditions for orthogonal polynomial systems satisfying anN th order linear differential
equation of spectral type with polynomial coefficients. He further showed that the differential equation
must have even order as an orthogonal polynomial system exists as a solution set. Kwon andYoon[14]
found that if such a differential equation has an orthogonal polynomial system of solutions, then its
differential operator must be symmetrizable (self-adjoint). Sufficient conditions for symmetrizability of
differential operators with polynomial coefficients were previously presented by Krall and Littlejohn
[12]. Caruntu[3] presented a fourth-order differential equation of classical orthogonal polynomials and
its associated singular eigenvalue problem. Kwon et al.[13] showed that a classical orthogonal system
satisfying a second-order differential equation also satisfies a differential equation of orderN, whereN
is an even number and theN th-order differential operator is a linear combination of iterations of the
second-order operator. Moreover, they showed that orthogonal polynomials satisfying a spectral type
differential equation of orderN, whereN is greater than 2, must be Hermite polynomials if and only if
the leading coefficient is a nonzero constant. Koekoek and Koekoek[10] reported differential equations
satisfied by generalized Jacobi polynomials. A survey of the latest results concerning the classification
of linear differential equations off spectral type having a sequence of polynomial eigenfunctions that
are orthogonal with respect to some real bilinear form can be found in Everitt et al.[6]. Shifted Jacobi
operators were introduced by Hajmirzaahmad[9]. He showed that they are self-adjoint.
The computer revolution of the last few decades led to a development of approximation theory and nu-

merical analysis, and consequently to an increased interest in orthogonal polynomials.Numericalmethods
and software packages have been developed for solvingSturm–Liouville problems.A review of numerical
methods for self-adjoint andnon-self-adjoint nonsingular boundary eigenvalueSturm–Liouville problems
canbe found inGreenberg andMarletta[7]. Bayley et al.[2] reported a software package, SLEIGN, for the
computation of eigenvalues andeigenfunctions of either regular or singular second-order Sturm–Liouville
boundary value problems. This code is based on the Prufer transformation and the knowledge of the pre-
cise number of zeros of the eigenfunctions. In the singular case, SLEIGN “has no serious competitor’’[1].
The only code available dealingwith fourth-order Sturm–Liouville boundary value problems is SLEUTH,
Greenberg and Marletta[8]. Even so, it is limited to regular problems. Solving singular problems is a
future direction of their research. Chanane[4] extended his results on the computation of eigenvalues of
second-order Sturm–Liouville problems to a class of fourth-order problems. This approach was based on
iterated integrals and Fliess series.
This paper reports self-adjoint differential equations for classical orthogonal polynomials and their

associated eigenvalue singular problems. Besides contributing to the continuous effort of studying or-
thogonal polynomials’ properties, this paper can be very useful as reference to researchers interested in
seeking numerical solutions of singular two-point higher order Sturm–Liouville eigenvalue problems.

2. Self-adjoint differential equations of orthogonal polynomials

Orthogonal systems play an important role in analysis, mainly because functions belonging to very
general classes can be expanded in series of orthogonal functions. Classical orthogonal polynomials
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(Jacobi, Legendre, Hermite, Laguerre and Tchebycheff) are important classes of orthogonal systems.
They are commonly encountered inmany applications. In addition to the orthogonal property, they are the
integrals of differential equations of a simple form, and can be defined as the coefficients in expansions
of powers oft of suitable chosen functionsw(x, t), called generating functions. Classical orthogonal
polynomials can be found using Rodrigues’ formula[5,15]. A system of polynomials,{Qn(x)}∞n=0, is
said to be orthogonal with weight�(x) on the interval[a, b] if their inner product is given by

(Qn,Qm)� =
∫ b

a

�(x)Qn(x)Qm(x)dx = 0, n 
= m, (1)

whereQn(x) is the orthogonal polynomial ofnth degree of the considered system andm andn are
any nonnegative integers. Let us consider thatQn(x) denotes any classical orthogonal polynomial of
nth degree. Classical theory of orthogonal polynomials shows that the classical orthogonal polynomials
satisfy the following second-order differential equation[5,15]

�
d2Qn

dx2
+

[
� + d�

dx

]
dQn

dx
− n[�1 + (n + 1)�2]Qn = 0, (2)

where�(x) and�(x) are two polynomial functions as follows:

�(x) = �1x + �0, �(x) = �2x
2 + �1x + �0, �21 + �22>0, (3)

�(x) is the weight function of the inner product, and the following requirements are met:

1

�

d�

dx
= �

�
, (4)

lim
x→a
x→b

�� = 0. (5)

We present here self-adjoint differential equations, 2r order, satisfied by classical orthogonal polyno-
mials, wherer is any natural number. Four lemmas and a consequence precede Proposition 1 in which
the differential equation is presented.

Lemma 1. If Eq. (4) is satisfied, then the jth order derivative of��r is given by

dj

dxj
(��r ) = ��r−j �j , (6)

where j is any nonnegative integer less than or equal to r and�r is a polynomial of rth degree satisfying
the following recurrence relation:

�j =
[
� + (r − j + 1)

d�

dx

]
�j−1 + �

d�j−1

dx
(7)

for any natural number j less than or equal to r, and�0 = 1.

Proof. This is proved by induction. Ifj = 0, then Eq. (6) gives�0 = 1. If j = 1, using Eq. (4), the first
derivative of��r becomes

d

dx
(��r ) = ��r−1�1 where �1 = � + r

d�

dx
. (8)
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Assuming that Eqs. (6) and (7) are true forj, it is proven that they are also true forj + 1. Since the
(j + 1)th order derivative of��r is given by

dj+1

dxj+1(��r ) = d

dx

[
dj

dxj
(��r )

]
= d

dx
(��r−j �j )

using Eq. (4), Eqs. (6) and (7) are obtained forj + 1.

Lemma 2. If Eq. (4) is satisfied, then the first derivative of the polynomials�j satisfy the following
relation:

d�j
dx

= bj �j−1, (9)

where j is any natural number less than or equal to r, and the constantsbj are given by

bj = j

2

[
2
d�

dx
+ (2r − j + 1)

d2�

dx2

]
. (10)

Proof. This is proved by induction. Ifj = 1, using�1 from Eq. (8), it results

d�1
dx

= b1�0 where b1 = d�

dx
+ 2r

d2�

dx2
.

Let us suppose that Eqs. (9) and (10) are true forj and then prove that they are also true forj + 1. Using
Eq. (7) forj + 1, Eq. (4) and then Eq. (6) forj, it results

d�j+1

dx
= bj+1�j where bj+1 = bj + d�

dx
+ (r − j)

d2�

dx2
.

Therefore, using (10) forj, Eq. (10) results forj + 1.

Consequence 3.The polynomials�j satisfy the following recurrence relation:

�j =
[
� + (r − j + 1)

d�

dx

]
�j−1 + bj−1��j−2, (11)

where j is any natural number greater than or equal to2 and less than or equal to r, andbj are given by
Eq. (10).Also, �0 = 1 and�1 = � + r(d�/dx).

Proof. Obviously, it results from Lemmas 1 and 2.

Lemma 4. If Eqs. (3) and (4) are satisfied, then the leading coefficientscj of the polynomials�j are
given by

cj =
{
1 if j = 0,∏j

i=1 [�1 + (2r − i + 1)�2] if j 
= 0 and j�r.
(12)

Proof. This is also proved by induction. Ifj = 0, then�0 = 1 and consequently its leading coefficient is
c0 = 1. If j = 1, then according to Eqs. (7) and (3), the leading coefficient of�1 is c1 = �1 + 2r�2. Let
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us assume that Eq. (12) is true forj and prove that it is also true forj + 1. Using Eq. (7) forj + 1, the
leading coefficientcj+1 of �j+1 results as follows:

cj+1 = [�1 + (2r − i)�2]cj .
This gives Eq. (12) forj + 1.

Lemma 5. If Sk is a sum defined by

Sk =
r−k∑
j=0

(n − r)!
(n − 2r + j + k)!

(
r − k

j

)
�r−j−k
2 cj , (13)

where k is any nonnegative integer less than r, then the following recurrence relation occurs

Sk = [�1 + (n + k + 1)�2]Sk+1, (14)

where k is any natural number less thanr − 1.Consequently, the sumS0 is given by

S0 =
r−1∏
k=0

[�1 + (n + k + 1)�2]. (15)

Proof. Since(
r − k

j

)
=

(
r − k − 1

j

)
+

(
r − k − 1
j − 1

)
(16)

the Eq. (13) can be written as

Sk =
r−k−1∑
j=0

(n − r)!
(n − 2r + j + k)!

(
r − k − 1

j

)
�r−j−k
2 cj

+
r−k∑
j=1

(n − r)!
(n − 2r + j + k)!

(
r − k − 1
j − 1

)
�r−j−k
2 cj . (17)

Changing the summation index of the second sum of the right-hand side fromj to j +1 and then factoring
out, the sumSk becomes

Sk =
r−k−1∑
j=0

(n − r)!
(n − 2r + j + k + 1)!

(
r − k − 1

j

)

× �r−j−k−1
2 cj

[
�2(n − 2r + j + k + 1) + cj+1

cj

]
. (18)

According to Eq. (12), the ratio between the coefficientscj+1 andcj is given by

cj+1/cj = [�1 + (2r − j)�2]. (19)
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Consequently, Eq. (18) can be rewritten as

Sk = [�1 + (n + k + 1)�2]
r−k−1∑
j=0

(n − r)!
(n − 2r + j + k + 1)!

(
r − k − 1

j

)
�r−j−k−1
2 cj . (20)

Since the sum of the right-hand side of Eq. (20) isSk+1, the recurrence relation (14) has been proved. In
addition, the sumSr−1 resulting from Eq. (13) is given by

Sr−1 = [�1 + (n + r)�2]. (21)

Therefore, using the recurrence relations (14) and (21), Eq. (15) is obtained.

Proposition 1. If conditions(3)–(5)are satisfied, then classical orthogonal polynomialsQn(x) (Jacobi,
Legendre, Hermite, Laguerre and Tchebycheff) satisfy the following differential equation of2r order:

r∑
j=0

(
r

j

)
�r−j �j

d2r−jQn

dx2r−j
− �rnQn = 0 (22)

or in self-adjoint form

1

�

dr

dxr

(
��r

drQn

dxr

)
− �rnQn = 0, (23)

where r is any natural number and the eigenvalue parameter�rn is given by

�rn =
r−1∏
k=0

(n − k)[�1 + (n + k + 1)�2]. (24)

The weight function�(x), the polynomial functions�(x) and �(x) and the coefficients�1 and �2 are
given by Eqs.(3) and(4),and the polynomials�j and the coefficientscj are given by Eqs.(11)and(12),
respectively. The eigenvalue parameter�rn has nonzero values forn�r.

Proof. Next integral

I =
∫ b

a

dr

dxr

(
��2

drQn

dxr

)
xk dx, (25)

wherek is any nonnegative integer less thann, will be calculated in two different ways. First, through
integrating repeatedly by parts and using Eqs. (4) and (5), it is proved that the integral (25) is zero.
Calculating in this way, the integralI becomes

I = (−1)r
k!

(k − r)!
∫ b

a

Qn

dr

dxr
(��rxk−r )dx. (26)

Applying Leibniz’ rule for therth order derivative under the integral and then using Eq. (6), the integral
becomes

I = (−1)r
k!

(k − r)!
∫ b

a

�Qnpnk dx, (27)
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wherepnk is a polynomial ofkth degree given by

pnk =
n∑

j=0

(
r

j

)
�r−j �j

dr−j

dxr−j
(xk−r ). (28)

AsQn(x) polynomials are orthogonal to any polynomial of a degree strictly smaller thann andpnk(x)
are polynomials of degree less than or equal ton − 1, the integralI is zero

I = 0. (29)

Second, calculating the derivatives under integral (25) and then using Eq. (4), it will finally be proved
that�rn is given by (24) due to (29). Calculating under the integral, the relation (25) becomes

I =
∫ b

a

�xk
r∑

j=0

(
r

j

)
�r−j �j

d2r−jQn

dx2r−j
dx. (30)

Using the nomenclature of the inner product (1) into Eq. (30), Eq. (29) can be rewritten as
xk,

r∑
j=0

(
r

j

)
�r−j �j

d2r−jQn

dx2r−j




�

= 0, (31)

wherek is any nonnegative integer less thann. According to the theorem of uniqueness of orthogonal
polynomials, we can write

r∑
j=0

(
r

j

)
�r−j �j

d2r−jQn

dx2r−j
= �nrQn, (32)

where�rn is a constant to be determined. Therefore, writing thenth degree orthogonal polynomial as
Qn(x) = qnx

n + qn−1x
n−1 + · · · + q0, where the leading coefficient isqn 
= 0, and then equating the

coefficients ofxn of both sides of Eq. (32), the parameters�rn result as follows:

�rn =
r∑

j=0

n!
(n − 2r + j)!

(
r

j

)
�r−j
2 cj .

Therefore, according to Lemma 5, the eigenvalue�rn is given by Eq. (24). Further, substituting�rn into
Eq. (32), the differential equation (22), or in self-adjoint form (23), is obtained.

3. Eigenvalue singular problems

Eigenvalue problems, either regular or singular, associated with differential equations are frequently
encountered in practice in connection with physical and engineering problems. The eigenvalue singular
problem associated with the second-order differential equation Sturm–Liouville (2) is well known. The
eigenvalue singular problem associated with the 2r-order differential equation (22), or in self-adjoint
form (23), over the interval[a, b] is presented as follows:
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Proposition 2. We consider the2r order differential equation withx = a andx = b singular points

r∑
j=0

(
r

j

)
�r−j �j

d2r−jY

dx2r−j
− �rY = 0 (33)

or in self-adjoint form

1

�

dr

dxr

(
��r

drY

dxr

)
− �rY = 0, (33

′
)

where�r is a real constant and[a, b] is the interval of orthogonality. If relations(3)–(5)are satisfied and
the following end conditions are met:

Y (a), Y (b) finite (34)

then the unique eigenvalues�rn and eigenfunctionsYn(x) are

�rn =
r−1∏
k=0

(n − k)[�1 + (n + k + 1)�2] (35)

and

Yn(x) = Qn(x). (36)

Qn(x) are the orthogonal polynomials of the considered system, and the polynomials�j are given by Eq.
(11).The eigenvalue parameter�rn has nonzero values forn�r.

Proof. First, it is proved that (35) and (36) are eigenvalues and eigenfunctions of problem (33)–(34).
As shown in Proposition 1, (35) and (36) satisfy Eq. (33). AsQn(x) are polynomials, they are finite at
x=a, x=b, and consequently theymeet the requirements (34). Therefore,�rn andQn(x) are eigenvalues
and eigenfunctions of problem (33)–(34).
Second, it is proven by contradiction that the eigenvalue singular problem (33)–(34) does not admit

eigenvalues and eigenfunctions other than (35) and (36), respectively. Multiplying Eq. (33) by�(x), this
equation can be rewritten in a self-adjoint form as

dr

dxr

(
��r

drY

dxr

)
− �r�Y = 0. (37)

Suppose that�rn andQn(x) are not the unique eigenvalues and eigenfunctions of the eigenvalue singular
problem (33)–(34). Let�∗ andY ∗(x) be an eigenvalue and an eigenfunction, respectively, other than any
�rn andQn(x). Two eigenvalue singular problems are satisfied by�rn andQn(x), and�∗ andY ∗(x),
respectively, as follows:

dr

dxr

(
��r

drQn

dxr

)
− �rn�Qn = 0 and Qn(a),Qn(b) finite (38)

and

dr

dxr

(
��r

drY ∗

dxr

)
− �∗�Y ∗ = 0 and Y ∗(a), Y ∗(b) finite. (39)
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Multiplying Eqs. (38) and (39) byY ∗(x) andQn(x), respectively, then subtracting the second equation
from the first and integrating the resulting equation froma to b, the following equation is obtained:

(�∗ − �rn)

∫ b

a

(�QnY
∗)dx =

∫ b

a

Qn

dr

dxr

(
��r

drY ∗

dxr

)
dx −

∫ b

a

Y ∗ dr

dxr

(
��r

drQn

dxr

)
dx. (40)

Using relations (4)–(6), and the endpoint conditions of (38) and (39), the right-hand side of Eq. (40) is
zero.As�∗ has been assumed not to be equal to any�rn, the difference�∗ −�rn cannot be zero. Therefore,
the next integral, which is an inner product between anyQn(x) andY ∗(x), has to be zero

(Qn, Y
∗)� =

∫ b

a

�QnY
∗ dx = 0, (41)

wheren is any nonnegative integer.As the functionY ∗(x) satisfies Eq. (39), it is continuous on the interval
(a, b) along with its first 2r − 1 derivatives. Moreover,Y ∗(a) andY ∗(b) are assumed to be finite (30), so
the functionY ∗(x) is continuous on the closed interval[a, b]. Thus,Y ∗(x) can be expanded in terms of
orthogonal polynomials as follows:

Y ∗(x) = c0Q0(x) + c1Q1(x) + · · · + cnQn(x) + · · · , (42)

wherecn are real coefficients. Multiplying Eq. (42) by�Qn, wheren is any nonnegative integer, and then
integrating over the interval(a, b), due to Eq. (41), results in

cn(Qn,Qn)� = (Qn, Y
∗)� = 0. (43)

The nomenclature presented in (1) has been used here. SinceQn(x) are orthogonal polynomials, the
inner product(Qn,Qn)� cannot be zero. So,cn=0 for any nonnegative integern. Therefore, the function
Y ∗ has to be identically zero. This is a contradiction, sinceY ∗(x) has been considered an eigenfunction,
which cannot be identically zero. Therefore, the assumption that the eigenvalues and eigenfunctions,�rn
andQn(x), respectively, are not unique is false. Consequently, the proposition has been proved.

4. General self-adjoint equation and eigenvalue problem

Since classical orthogonal polynomials satisfy any self-adjoint differential Eq. (23), they will satisfy
any linear combination of these equations, as can be proved by another two propositions similar to
Propositions 1 and 2. So, a general self-adjoint differential equation of classical orthogonal polynomials
Qn(x), can be written as follows:

r∑
i=1

ci
di

dxi

(
��i

diQn

dxi

)
− �rn�Qn = 0, (44)

whereci are any real constants,n is any nonnegative integer, and the eigenvalue parameter�rn is given
by

�nr =
r∑

i=1

ci�ni, (45)
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where�in are given by Eq. (24). In addition, the singular eigenvalue problem associated with this general
self-adjoint differential equation is written as

r∑
i=1

ci
di

dxi

(
��i

diY

dxi

)
− �r�Y = 0, Y (a), Y (b) finite (46)

and it gives the unique eigenvalues and eigenfunctions�rn=∑r
i=1 ci�in andYn(x)=Qn(x), respectively.

5. Second-, fourth- and sixth-order differential equations

If the order of differential equation (22), or in self-adjoint form (23), is two, thenr = 1 and the
second-order differential equation is Eq. (2),[5,15], where�1n = n[�1 + (n + 1)�2], n�1.
If the order of Eqs. (22) and (23) is four, thenr = 2 and the fourth-order differential equation is

�2
d4Qn

dx4
+ 2��

d3Qn

dx3
+

[
d

dx
(��) + ��

]
d2Qn

dx2
− �2nQn = 0 (47)

or in self-adjoint form

1

�

d2

dx2

(
��2

d2Qn

dx2

)
− �2n Qn = 0, (48)

where�2n and the polynomial function�(x) are respectively given by

�2n = (n − 1)n[�1 + (n + 1)�2][�1 + (n + 2)�2], (49)

� = � + 2
d�

dx
(50)

andn�2 for �2n 
= 0. This fourth-order differential equation can be found in[3].
If the order of Eqs. (22) and (23) is six, thenr=3 and the sixth-order differential equation in self-adjoint

form is

1

�

d3

dx3

(
��3

d3Qn

dx3

)
− �3nQn = 0, (51)

where

�3n = (n − 2)(n − 1)n[�1 + (n + 1)�2][�1 + (n + 2)�2][�1 + (n + 3)�2] (52)

andn�3 for �3n 
= 0.

6. Application

The above concepts can be used to study bending vibrations of nonuniform beams. Let us find eigen-
frequencies and mode shapes for free bending vibrations of a beam of lengthL with free-free boundary
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conditions and a circular cross-section whose radius is as follows:

R(x) = R0

(
1− 4x2

L2

)
, x ∈

(
−L

2
,
L

2

)
. (53)

The Euler–Bernoulli differential equation of bending vibration of beams is

d2

dx2

(
EI1(x)

d2Y (x)

dx2

)
− �0�

2A1(x)Y (x) = 0, (54)

whereY (x) is the transversal displacement,A1(x) andI1(x) are the area and the moment of inertia of the
current cross-section, respectively;E, �0 and� are Young modulus, mass density and eigenfrequency,
respectively, andx is the current longitudinal coordinate of the beam. According to (53) this is a beam
with sharp ends. So, the boundary conditions are reduced to

Y

(
−L

2

)
, Y

(
L

2

)
finite. (55)

Using the change of variablex=L�/2, theEuler–Bernoulli differential equation (54) alongwith boundary
conditions is

d2

d�2

[
(1− �2)4

d2Y

d�2

]
− �(1− �2)2Y = 0, Y (−1), Y (1) finite, (56)

where� is given by

� = �0�
2A0L

4

16EI0
(57)

and whereA0 andI0 are the cross-sectional area and moment of inertia at the reference longitudinal
coordinate� = 0 and are given by

A0 = 	R2
0, I0 = 	R4

0

4
. (58)

Problem (56) represents an eigenvalue singular problem of orthogonal polynomials. The functions�(�)
and�(�), and�(�), resulting from Eqs. (48) and (56), and Eq. (4), respectively, are given by

�(z) = (1− �2)2, �(z) = (1− �2), �(�) = −4�. (59)

The interval of orthogonality is(−1,1). The weight function�(�) given by Eq. (59) is the weight function
of Jacobi orthogonal polynomialsJp,q

n (�), specifically, the casep= q = 2. Since the eigenfunctions and
the eigenvalues of problem (56) areJp,q

n (�) and�n2 (see (49)), respectively, the mode shapesYn (x) and
the eigenfrequencies�n are as follows:

Yn(�) = J
2,2
n+1(�), (60)

�n = 4
√
n(n + 1)(n + 6)(n + 7)

1

L2

√
EI0

�0A0
, (61)
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wheren is any natural number. The coefficients�2 = −1 and�1 = −4, resulted from (59) and they were
used in (49) to obtain (61). The lowest dimensionless eigenfrequency and its corresponding mode shape
are as follows:

�1 = 16
√
7

1

L2

√
EI0

�0A0
, Y1(�) = c1(1− 7�2), (62)

wherec1 is a constant of proportionality.
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