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Abstract

This paper deals with spectral type differential equations of the self-adjoint differential operabote?:

4 d"Y(x)
p(x) dx” dx”

Ln[Y](x) =

(p(x)ﬁr(x) > = irnY(x)
If p(x) is the weight function an@(x) is a second degree polynomial function, then the corresponding classical
orthogonal polynomials,Q, (x)};2 ,, are shown to satisfy this differential equation whigpis given by

r—1

brn = [ [(n = B)loa + (0 + k + D],
k=0

wheres; andf, are the leading coefficients of the two polynomial functions associated with the classical orthogonal
polynomials. Moreover, the singular eigenvalue problem associated with this differential equation is shown to have
0, (x) and/,, as eigenfunctions and eigenvalues, respectively. Any linear combination of such self-adjoint operators
hasQ, (x) as eigenfunctions and the corresponding linear combinatiap,as eigenvalues.

© 2004 Elsevier B.V. All rights reserved.

Keywords:Orthogonal polynomials; Self-adjoint differential equations; Singular eigenvalue problems

*Tel.: +14195397635; fax: +14195304720.
E-mail addressdumitru.caruntu@utoledo.eddcaruntu@yahoo.cof.l. Caruntu).

0377-0427/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.10.004


https://core.ac.uk/display/82776619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:dumitru.caruntu@utoledo.edu
mailto:dcaruntu@yahoo.com

108 D.l. Caruntu / Journal of Computational and Applied Mathematics 180 (2005) 107-118
1. Introduction

With important applications, orthogonal polynomials theory was developed during the 20th century.
Two major publications marked this evolution, Szg46] and Chiharg5]. Recent considerations of
orthogonal polynomials and their differential equations have been published[Kihfjave necessary
and sufficient conditions for orthogonal polynomial systems satisfyingy#morder linear differential
equation of spectral type with polynomial coefficients. He further showed that the differential equation
must have even order as an orthogonal polynomial system exists as a solution set. Kwon aidiyoon
found that if such a differential equation has an orthogonal polynomial system of solutions, then its
differential operator must be symmetrizable (self-adjoint). Sufficient conditions for symmetrizability of
differential operators with polynomial coefficients were previously presented by Krall and Littlejohn
[12]. Caruntu[3] presented a fourth-order differential equation of classical orthogonal polynomials and
its associated singular eigenvalue problem. Kwon €tl8] showed that a classical orthogonal system
satisfying a second-order differential equation also satisfies a differential equation oNomlleereN
is an even number and théth-order differential operator is a linear combination of iterations of the
second-order operator. Moreover, they showed that orthogonal polynomials satisfying a spectral type
differential equation of ordeK, whereN is greater than 2, must be Hermite polynomials if and only if
the leading coefficient is a nonzero constant. Koekoek and Kodi®keported differential equations
satisfied by generalized Jacobi polynomials. A survey of the latest results concerning the classification
of linear differential equations off spectral type having a sequence of polynomial eigenfunctions that
are orthogonal with respect to some real bilinear form can be found in Everitt[6}.abhifted Jacobi
operators were introduced by Hajmirzaahnj@ld He showed that they are self-adjoint.

The computer revolution of the last few decades led to a development of approximation theory and nu-
merical analysis, and consequently to an increased interest in orthogonal polynomials. Numerical methods
and software packages have been developed for solving Sturm—Liouville problems. A review of numerical
methods for self-adjoint and non-self-adjoint nonsingular boundary eigenvalue Sturm—Liouville problems
can be found in Greenberg and Marldith Bayley et al[2] reported a software package, SLEIGN, for the
computation of eigenvalues and eigenfunctions of either regular or singular second-order Sturm—-Liouville
boundary value problems. This code is based on the Prufer transformation and the knowledge of the pre-
cise number of zeros of the eigenfunctions. In the singular case, SLEIGN “has no serious comjjétitor”

The only code available dealing with fourth-order Sturm—Liouville boundary value problemsis SLEUTH,
Greenberg and Marlet{@]. Even so, it is limited to regular problems. Solving singular problems is a
future direction of their research. Changagextended his results on the computation of eigenvalues of
second-order Sturm—Liouville problems to a class of fourth-order problems. This approach was based on
iterated integrals and Fliess series.

This paper reports self-adjoint differential equations for classical orthogonal polynomials and their
associated eigenvalue singular problems. Besides contributing to the continuous effort of studying or-
thogonal polynomials’ properties, this paper can be very useful as reference to researchers interested in
seeking numerical solutions of singular two-point higher order Sturm—Liouville eigenvalue problems.

2. Self-adjoint differential equations of orthogonal polynomials

Orthogonal systems play an important role in analysis, mainly because functions belonging to very
general classes can be expanded in series of orthogonal functions. Classical orthogonal polynomials
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(Jacobi, Legendre, Hermite, Laguerre and Tchebycheff) are important classes of orthogonal systems.
They are commonly encountered in many applications. In addition to the orthogonal property, they are the
integrals of differential equations of a simple form, and can be defined as the coefficients in expansions
of powers oft of suitable chosen functions(x, r), called generating functions. Classical orthogonal
polynomials can be found using Rodrigues’ form{Bal5]. A system of polynomials{Q, (x)};2 ., is

said to be orthogonal with weigltx) on the intervala, b] if their inner product is given by

b
(Qn. Om), = / p(X)0n(¥) On(x)dx =0, 1 % m, 0

where Q,,(x) is the orthogonal polynomial ofth degree of the considered system amé&ndn are

any nonnegative integers. Let us consider f@atx) denotes any classical orthogonal polynomial of

nth degree. Classical theory of orthogonal polynomials shows that the classical orthogonal polynomials
satisfy the following second-order differential equatjbri5]

d?Q,

ﬂv + |:oc - 3—f:| dézcn —nlag + (n + 1210, =0, (2)
whereu(x) andp(x) are two polynomial functions as follows:

2(x) =oax + a0, BOx) = Pox® + prx + fo. G+ 5>0, (3)
p(x) is the weight function of the inner product, and the following requirements are met:

1d o

b7 @

lim pp=0. )

x—b

We present here self-adjoint differential equationsp&er, satisfied by classical orthogonal polyno-
mials, wherer is any natural number. Four lemmas and a consequence precede Proposition 1 in which
the differential equation is presented.

Lemma 1. If Eq. (4) is satisfiedthen the jth order derivative gff" is given by

%(pﬁ’) =B, 6)
where j is any nonnegative integer less than or equal to rgnd a polynomial of rth degree satisfying
the following recurrence relatian
dV_/—l

dx
for any natural number j less than or equal tpandyy = 1.

(7)

d
I LR ey

Proof. This is proved by induction. Ij = 0, then Eq. (6) givegy = 1. If j =1, using Eq. (4), the first
derivative ofpp” becomes
dp

d
——(pp")=pp "1 where yy=ou+r——. ®)
dx dx
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Assuming that Egs. (6) and (7) are true foit is proven that they are also true fgr+ 1. Since the
(j + Dth order derivative opp”is given by

d/i+1 d[d . d .
J+1( ph )_ . [@(Pﬂ )] = a(ﬂﬁ ;)
using Eq. (4), Eqgs. (6) and (7) are obtained for 1.

Lemma 2. If Eq. (4) is satisfied then the first derivative of the polynomials satisfy the following
relation:

O v 9)

where j is any natural number less than or equal tamd the constants; are given by
do d?p
b; = 2|:2d—+(2r—]+1) ] (10)
Proof. This is proved by induction. If = 1, usingy; from Eq. (8), it results

dyl (o l0% dzﬁ
= by h =—+2
. =b1yg Where b1 = o +2r — 2
Let us suppose that Egs. (9) and (10) are trug¢ &d then prove that they are also true for 1. Using
Eq. (7) forj + 1, Eq. (4) and then Eq. (6) fgrit results

dy do d?
('j’;l:bj+1yj where bji1=b; + +( ])—ﬂ

Therefore, using (10) fgr Eq. (10) results foy + 1.

Consequence 3The polynomialg; satisfy the following recurrence relation

d
v = |:oc +@—j+ l)%] Vj-1+bj-1h7;-2 (1)

where j is any natural number greater than or equaltand less than or equal tg andb; are given by
Eq.(10).Alsg, yg = 1andy; = o + r(df/dx).

Proof. Obviously, it results from Lemmas 1 and 2.

Lemma 4. If Egs. (3) and (4) are satisfiedthen the leading coefficients of the polynomialy; are
given by

ci=1t if j=0, .
T a4+ @r — i + Dol if j #0and j<r.

Proof. This is also proved by induction. Jf= 0, thenyg = 1 and consequently its leading coefficient is
co=1.If j =1, then according to Egs. (7) and (3), the leading coefficient & c1 = o1 + 2rf,. Let
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us assume that Eq. (12) is true jaand prove that it is also true fgr+ 1. Using Eq. (7) forj + 1, the
leading coefficient ;1 of y; 1 results as follows:

cjv1=log + (2r —i)polc;.
This gives Eq. (12) foy + 1.

Lemma 5. If Sy is a sum defined by

r—k
_ (n—r)! r—k r—j—k
Sk_;(n—2r+j+k)!< j )ﬁz < (13)

where k is any nonnegative integer less thathen the following recurrence relation occurs

Sk =1lox + (n + k + 1)f]Sk+1, (14)

where k is any natural number less thar 1. Consequentlythe sumSy is given by

r—1
So=[Jlea + (0 + k + DB,l. (15)
k=0
Proof. Since

CORESNGEY

the Eq. (13) can be written as

S & (n —r)! r—k=1Y) ik,
k= = -2+ ! j 2 Y
r—k
(n—r)! Pk =1\ ok
. ” 17
+,Z:1(n—2r+j+k)!( ji—1 )Bz € a7

Changing the summation index of the second sum of the right-hand sid¢ togim- 1 and then factoring
out, the sun; becomes

S_""Z‘l (n—1)! (r—k—l)
k S -2+ k) j
x By I T e, |:ﬂ2(n — 2+ j+k+D)+ Cf;l} . (18)
J

According to Eq. (12), the ratio between the coefficients, andc; is given by

cjr1/cj =lua+ 2r — j)Bal. (19)
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Consequently, Eq. (18) can be rewritten as

r—k—1
Sc=1lo1+@n+k+Dpl Y
j=0

(n—r)! r—k—1 r—j—k—1 )
(n—2r+j+k+1)!( J >ﬁ2 ‘- (20)

Since the sum of the right-hand side of Eq. (20¥jis1, the recurrence relation (14) has been proved. In
addition, the sung,_; resulting from Eg. (13) is given by

Sr—1=[ua + (n +71)pal. (21)
Therefore, using the recurrence relations (14) and (21), Eq. (15) is obtained.

Proposition 1. If conditions(3)—(5)are satisfiedthen classical orthogonal polynomiad, (x) (Jacobi
LegendreHermite Laguerre and Tchebychgfgatisfy the following differential equation 2f order.

r ) d2r—jQ
r\ — no,
2(:)(])[3 jVj dx2r—J —mQn=0 (22)
j:

or in self-adjoint form

1d L d"0,
Sav (G2 ) im0 @3)
where r is any natural number and the eigenvalue paramgigeis given by
r—1
i =[]0 =B)loa+ (4 k + D). (24)
k=0

The weight functiom(x), the polynomial functiona(x) and f(x) and the coefficients; and 3, are
given by Eqs(3) and(4), and the polynomialg; and the coefficients; are given by Eqg11)and(12),
respectively. The eigenvalue parametgy has nonzero values far>r.

Proof. Next integral

b qr r
1:/ dr pﬁzd—an xFdx, (25)
. Ox dx

wherek is any nonnegative integer less tharwill be calculated in two different ways. First, through
integrating repeatedly by parts and using Egs. (4) and (5), it is proved that the integral (25) is zero.
Calculating in this way, the integrabecomes

I = (=1 K "o Y "xk=) d 26
= (-1 (k_r)!/a On g (pF'x" ") dx. (26)

Applying Leibniz’ rule for therth order derivative under the integral and then using Eq. (6), the integral
becomes
k!

I=1 k —r)!

b
/ pQOn Pk dx, (27)
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wherep, is a polynomial ofkth degree given by

n .odr
Puk=Y (;) B go= (k). (28)

j=0

As 0, (x) polynomials are orthogonal to any polynomial of a degree strictly smallerritzand p,,x (x)
are polynomials of degree less than or equad te 1, the integral is zero

I=0. (29)

Second, calculating the derivatives under integral (25) and then using Eq. (4), it will finally be proved
that/,, is given by (24) due to (29). Calculating under the integral, the relation (25) becomes

b r d2r—j
_ kNN (7 i On
1_/a px Z(J.)ﬁ N g 4 (30)
j=0
Using the nomenclature of the inner product (1) into Eqg. (30), Eq. (29) can be rewritten as
r 2r—j
k r ,f,jN ) d Qn _
* ’%(j)ﬁ Vi T qx2r— =0, (31)

P

wherek is any nonnegative integer less tharAccording to the theorem of uniqueness of orthogonal
polynomials, we can write

r , . erijn )
Z(]-)ﬂ ]VjW=/tnrQn, (32)

j=0

where/,, is a constant to be determined. Therefore, writingrittedegree orthogonal polynomial as
0,(x) = gux" + gu_1x""1 + .- 4 go, where the leading coefficientis, # 0, and then equating the
coefficients ofx” of both sides of Eq. (32), the parametéfs result as follows:

r

n' r r—j
A = — | . Tes
" Z (n—2r+ ) (])32 “

j=0

Therefore, according to Lemma 5, the eigenvalygis given by Eqg. (24). Further, substituting, into
Eg. (32), the differential equation (22), or in self-adjoint form (23), is obtained.

3. Eigenvalue singular problems

Eigenvalue problems, either regular or singular, associated with differential equations are frequently
encountered in practice in connection with physical and engineering problems. The eigenvalue singular
problem associated with the second-order differential equation Sturm—Liouville (2) is well known. The
eigenvalue singular problem associated with theo®ler differential equation (22), or in self-adjoint
form (23), over the intervdls, b] is presented as follows:
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Proposition 2. We consider th@r order differential equation withh = @ andx = b singular points
r ) 2r—jY

"\ pr=i.,. d_ _ —

Z(])ﬂ Ve Y =0 (33)

j=0

or in self-adjoint form
14d dy ,
- B — /Y =0, (33)
p dx” dx”

where/, is a real constant anglz, b] is the interval of orthogonality. If relation@)—(5)are satisfied and
the following end conditions are met

Y(a), Y(b) finite (34)
then the unique eigenvalugs, and eigenfunction;, (x) are
r—=1
dn =[] = 0)loa + (0 + k + 1)B;] (35)
k=0
and
Y (x) = Qn(x). (36)

On(x) are the orthogonal polynomials of the considered systemd the polynomialg; are given by Eq.
(11). The eigenvalue parametey,, has nonzero values far>r.

Proof. First, it is proved that (35) and (36) are eigenvalues and eigenfunctions of problem (33)—(34).
As shown in Proposition 1, (35) and (36) satisfy Eq. (33).@&gx) are polynomials, they are finite at
x=a, x=b, and consequently they meet the requirements (34). TheréforndQ, (x) are eigenvalues
and eigenfunctions of problem (33)—(34).

Second, it is proven by contradiction that the eigenvalue singular problem (33)—(34) does not admit
eigenvalues and eigenfunctions other than (35) and (36), respectively. Multiplying Eq. (33))bthis
equation can be rewritten in a self-adjoint form as

o d'y .
T (pﬁ’ o ) — ApY =0. (37)

Suppose that,,, andQ,,(x) are not the unique eigenvalues and eigenfunctions of the eigenvalue singular
problem (33)—(34). Let* andY*(x) be an eigenvalue and an eigenfunction, respectively, other than any

A @and @, (x). Two eigenvalue singular problems are satisfiedihyand Q,,(x), and/* andY*(x),
respectively, as follows:

¢ (pﬁ’ er”)—xmeFo and 0,(a), 0n(b) finite (38)
dx” dx”

and

d’ dy* o
g (pﬁ’ g > —pY*=0 and Y*(a), Y*(b) finite. (39)
x” x”
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Multiplying Egs. (38) and (39) by *(x) and Q,,(x), respectively, then subtracting the second equation
from the first and integrating the resulting equation frato b, the following equation is obtained:

b b ar dy* b d dr "
- /lm)/ (PO, Y dx = / On— | pp” dx — / Y*— | pp” Q dx. (40)
p a dx” dx” p dx” dx”

Using relations (4)—(6), and the endpoint conditions of (38) and (39), the right-hand side of Eq. (40) is
zero. As.* has been assumed not to be equal to/apythe difference™ — 4,,, cannot be zero. Therefore,
the next integral, which is an inner product between @pyx) andY *(x), has to be zero

b
(me*nﬁ:/’anY*¢x=o, (a1)

wherenis any nonnegative integer. As the functibf(x) satisfies Eq. (39), itis continuous on the interval
(a, b) along with its first 2 — 1 derivatives. Moreovel( *(a) andY*(b) are assumed to be finite (30), so
the functionY *(x) is continuous on the closed interJal »]. Thus,Y*(x) can be expanded in terms of
orthogonal polynomials as follows:

Y*(x) =coQo(x) +c101(x) + -+ Qn(x) + -+ -, (42)

wherec, are real coefficients. Multiplying Eq. (42) )0, wheren is any nonnegative integer, and then
integrating over the interval:, b), due to Eq. (41), results in

cn(Qn, Qn)p = (On, Y*)p =0. (43)

The nomenclature presented in (1) has been used here. 8jr@@ are orthogonal polynomials, the
inner product Q,,, 0,,), cannot be zero. So, =0 for any nonnegative integar Therefore, the function

Y* has to be identically zero. This is a contradiction, sifi¢éx) has been considered an eigenfunction,
which cannot be identically zero. Therefore, the assumption that the eigenvalues and eigenfungtions,
andQ, (x), respectively, are not unique is false. Consequently, the proposition has been proved.

4. General self-adjoint equation and eigenvalue problem

Since classical orthogonal polynomials satisfy any self-adjoint differential Eq. (23), they will satisfy
any linear combination of these equations, as can be proved by another two propositions similar to
Propositions 1 and 2. So, a general self-adjoint differential equation of classical orthogonal polynomials
0, (x), can be written as follows:

r di ) di "
Z Ci 7 p/))l Q - /lrann = O’ (44)
dx! dx!

i=1

wherec; are any real constants,is any nonnegative integer, and the eigenvalue paramgtes given
by

.
My = Y Cilnis (45)
i=1
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where/;, are given by Eq. (24). In addition, the singular eigenvalue problem associated with this general
self-adjoint differential equation is written as

}:cll Qw--)-umy=o, Y(a), Y (b) finite (46)

and it gives the unique eigenvalues and eigenfunctipns > ;_; ¢; i, andY, (x) = Q, (x), respectively.

5. Second-, fourth- and sixth-order differential equations

If the order of differential equation (22), or in self-adjoint form (23), is two, tlrea 1 and the
second-order differential equation is Eq. ([(B),15], wherely, =nlo1 + (n + 1)f5], n>1.
If the order of Egs. (22) and (23) is four, ther= 2 and the fourth-order differential equation is

d*o d*0 d*Q,
2 n n
) n n —

p dic? +2py a3 [ (ﬁ?)+0€’/i| B 2.0, =0 (47)
or in self-adjoint form

1 d d?Q,

(pﬁz Q ) — A2n Qn =0, (48)

P dx2
where/, and the polynomial function(x) are respectively given by

don = (n — Dnlog + (n + Dfollea + (n + 2) B2, (49)

d
Y=o+ Zd—ﬁ (50)

andn > 2 for /4y, # 0. This fourth-order differential equation can be foundidh
If the order of Egs. (22) and (23) is six, thea 3 and the sixth-order differential equation in self-adjoint
formis

1 3430, ) B

P dx ( B dx3 ) — 23100 =0, (51)
where

Jgn = —2)(n — Dnlog + (n + D follog + (n + 2)follox + (n + 3) 5] (52)

andn >3 for A3, # 0.

6. Application

The above concepts can be used to study bending vibrations of nonuniform beams. Let us find eigen-
frequencies and mode shapes for free bending vibrations of a beam of lemgth free-free boundary
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conditions and a circular cross-section whose radius is as follows:

4x? L L
Rx)=Ro|1-— ——, = .
=ro(1-45). we(-LE) -
The Euler—Bernoulli differential equation of bending vibration of beams is
d? d2Y (x) )
@ (Ell(x) V) — pow”A1(x)Y (x) =0, (54)

whereY (x) is the transversal displacemeAt,(x) and/1(x) are the area and the moment of inertia of the
current cross-section, respectively; po andw are Young modulus, mass density and eigenfrequency,
respectively, and is the current longitudinal coordinate of the beam. According to (53) this is a beam
with sharp ends. So, the boundary conditions are reduced to

L L -
Y (_§> , Y <§> finite. (55)

Using the change of variable=L¢£/2, the Euler—Bernoulli differential equation (54) along with boundary
conditions is

i [(1 V2)4d2Y] (1— &)%Y =0, Y(-1),Y(1) finite (56)
Rl - L B -0, _1), ,
de? =) a2
where/ is given by
2 4
__ powAoL
= 16E1¢ ®7)

and whereAg and Ip are the cross-sectional area and moment of inertia at the reference longitudinal
coordinateZ = 0 and are given by

R4
Ag = nRg, Ip= ;40 (58)

Problem (56) represents an eigenvalue singular problem of orthogonal polynomials. The fumgtjons
andp(¢), andu(¢), resulting from Egs. (48) and (56), and Eq. (4), respectively, are given by

pR)=1—E2 B)=01-E), ad)=—4 (59)

The interval of orthogonality is—1, 1). The weight function(¢) given by Eq. (59) is the weight function
of Jacobi orthogonal polynomialg’? (¢), specifically, the casp = ¢ = 2. Since the eigenfunctions and
the eigenvalues of problem (56) arg'? (¢) and/,.» (see (49)), respectively, the mode shapgér) and
the eigenfrequencies, are as follows:

Yo (&) = JZ5(0), (60)

1 EI
on = 4/n DO+ D5 [0, (61)
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wheren is any natural number. The coefficieffis= —1 andx; = —4, resulted from (59) and they were
used in (49) to obtain (61). The lowest dimensionless eigenfrequency and its corresponding mode shape
are as follows:

1 El
01 =16v7 = | —2 ¥1(6) =c1(1— 78D, (62)
L2\ poAo

wherec; is a constant of proportionality.
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