375 research outputs found

    Ordering by the numbers in anatomy and by letters Too

    Get PDF
    Here, new rules of Latin anatomical nomenclature are proposed to deal with cases not covered by existing or other recommended rules. Determiners (e.g., numerals, letters, alphanumeric strings, and Latin names of Greek letters) should follow the noun they specify or limit, just as it is recommended that adjectives should follow the noun they modify. In general, Roman numerals, Latin letters, and Latin names of Greek letters are preferable to Arabic numerals and Greek letters in Latin anatomical terms. It is also noted that the word typus (type) appears to be superfluous and unnecessary in the Latin anatomical nomenclature. Clin. Anat. 30:700–702, 2017. © 2017Wiley Periodicals, Inc

    Variety of transversus thoracis muscle in relation to the internal thoracic artery: an autopsy study of 120 subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transversus thoracis muscle is a thin muscular layer on the inner surface of the anterior thoracic wall that is always in concern during harvesting of the internal thoracic artery. Because the muscle is poorly described in the surgical literature, the aim of the present study is to examine in details its variations.</p> <p>Methods</p> <p>The data was obtained at standard autopsies of 120 Caucasian subjects (Bulgarians) of both sexes (97 males and 23 females), ranging in age from 18 to 91 years (mean age 52.8 ± 17.8 years). The transversus thoracis morphology was thoroughly examined on the inner surface of the chest plates collected after routine incisions.</p> <p>Results</p> <p>An overall examination revealed that in majority of cases the transversus thoracis slips formed a complete muscular layer (left - 75.8%, right - 83.3%) or some of the slips (left - 22.5%, right - 15%) or all of them (left - 1.7%, right - 1.7%) were quite separated. Rarely (left - 3.3%, right - 5.8%), some fibrous slips of the transversus thoracis were noted. In 55.8% of the cases there was left/right muscle symmetry; 44.2% of the muscles were asymmetrical. Most commonly, the highest muscle attachment was to the second (left - 53.3%, right - 37.5%) or third rib (left - 29.2%, right - 46.7%). The sixth rib was the most common lowest attachment (left - 94.2%, right - 89.2%). Most frequently, the muscle was composed of four (left - 31.7%, right - 44.2%) or fifth slips (left - 53.3%, right - 40.8%).</p> <p>Conclusions</p> <p>This study provides detailed basic information on the variety of the transversus thoracic muscle. It also defines the range of the clearly visible, uncovered by the muscle part of the internal thoracic artery and the completeness of the muscular layer over it. The knowledge of these peculiar muscle-arterial relations would definitely be beneficial to cardiac surgeon in performing fast and safe arterial harvesting.</p

    Internally coupled ears in living mammals.

    Get PDF
    It is generally held that the right and left middle ears of mammals are acoustically isolated from each other, such that mammals must rely on neural computation to derive sound localisation cues. There are, however, some unusual species in which the middle ear cavities intercommunicate, in which case each ear might be able to act as a pressure-difference receiver. This could improve sound localisation at lower frequencies. The platypus Ornithorhynchus is apparently unique among mammals in that its tympanic cavities are widely open to the pharynx, a morphology resembling that of some non-mammalian tetrapods. The right and left middle ear cavities of certain talpid and golden moles are connected through air passages within the basicranium; one experimental study on Talpa has shown that the middle ears are indeed acoustically coupled by these means. Having a basisphenoid component to the middle ear cavity walls could be an important prerequisite for the development of this form of interaural communication. Little is known about the hearing abilities of platypus, talpid and golden moles, but their audition may well be limited to relatively low frequencies. If so, these mammals could, in principle, benefit from the sound localisation cues available to them through internally coupled ears. Whether or not they actually do remains to be established experimentally.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00422-015-0675-

    The anatomy, physiology, functional significance and evolution of specialized hearing organs of gerbilline rodents

    Full text link
    Middle and inner ear anatomy correlates with neurophysiological responses to a wide range of sound frequencies for species of the Gerbillinae representing generalized, intermediate, and specialized anatomical conditions. Neurophysiological data were recorded from 81 specimens of 13 species representing six genera. Anatomical parameters involved in the process of hearing were correlated with the neurophysiological data to assess the effects of different degrees of anatomical specialization on hearing. The 13 species tested in this manner have graphic curves of auditory sensitivity of remarkably similar disposition over the frequencies tested and to those published for Kangaroo Rats. Ears with anatomical specializations show greater auditory sensitivity. The natural history of the Gerbillinae, particularly the kinds of predators, degree of predation, and habitat is reviewed and utilized to interpret the significance of the degree of auditory specialization in the forms studied and to evaluate the prevailing hypothesis that these specializations enhance the ability of these rodents to survive in open desert situations by detecting and evading predators. The middle ear anatomy of five additional genera and species was also studied. Thus, data on the entire spectrum of gerbilline middle ear morphology provide an evolutionary sequence. Certain anatomical parameters of the organ of Corti show a degree of specialization parallel to that of features of the middle ear. The morphological changes and possible functional roles of these features are considered. A very high correlation exists for degree of specialization and aridity of habitat, thus specialization increases with increasing aridity. This increased specialization may result from more effective predation in open xeric environments. Auditory acuity for a wide range of low frequency sounds augmented by auditory specialization is hence more advantageous here. There does not appear to be selection for hearing at particular frequencies in this range. The peaks of greatest auditory sensitivity appear to correspond to the resonant frequencies of the different components of the middle ear transformer and cavity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50256/1/1051380103_ftp.pd

    The Comparative Osteology of the Petrotympanic Complex (Ear Region) of Extant Baleen Whales (Cetacea: Mysticeti)

    Get PDF
    Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti.The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex.This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history

    3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

    Get PDF
    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and theirPeer ReviewedPostprint (published version
    • …
    corecore