161 research outputs found

    Artificial intelligence as writing: knowledge-based hypertext systems as a medium for communication

    Get PDF
    This thesis is an exploration of a new metaphor for artificial intelligence (AI). Traditionally, the computer within AI has been viewed as an agent, one with which the user engages in a conversation. More recently certain researchers have proposed the notion that artificial intelligence (and indeed computing in general) can be more appropriately seen as a form of writing. Initially this thesis reviews the literature in this area, and aspects of AI which support the approach. Features of writing are then described which show parallels with AI. This then allows us to take lessons from the history and development of both traditional writing and the new computer-based writing systems to inform the design of a new type of artificial intelligence system. A design based on these features, called Running Texts is presented through a number of small examples. Issues that arise from these and possible future developments, based on the implementation are then discussed. A rationale for users choosing to learn a system such as Running Texts is proposed, as benefits from the psychological and social implications of writing can be applied to AI systems, when they are seen as writing. The same parallels point out potential problems, and suggest new ways to see the relation between AI and thought

    ACS photometry of extended, luminous globular clusters in the outskirts of M31

    Get PDF
    A new population of extended, luminous globular clusters has recently been discovered in the outskirts of M31. These objects have luminosities typical of classical globular clusters, but much larger half-light radii. We report the first results from deep ACS imaging of four such clusters, one of which is a newly-discovered example lying at a projected distance of ~60 kpc from M31. Our F606W, F814W colour-magnitude diagrams extend ~3 magnitudes below the horizontal branch level, and clearly demonstrate, for the first time, that all four clusters are composed of >10 Gyr old, metal-poor stellar populations. No evidence for multiple populations is observed. From a comparison with Galactic globular cluster fiducials we estimate metallicities in the range -2.2 < [Fe/H] < -1.8. The observed horizontal branch morphologies show a clear second parameter effect between the clusters. Preliminary radial luminosity profiles suggest integrated magnitudes in the range -6.6 < M_V < -7.7, near the median value of the globular cluster luminosity function. Our results confirm that these four objects are bona fide old, metal-poor globular clusters, albeit with combined structures and luminosities unlike those observed for any other globular clusters in the Local Group or beyond.Comment: 12 pages, 3 figures, 1 table; accepted for publication in ApJ Letter

    N-body Models of Extended Clusters

    Full text link
    We use direct N-body simulations to investigate the evolution of star clusters with large size-scales with the particular goal of understanding the so-called extended clusters observed in various Local Group galaxies, including M31 and NGC6822. The N-body models incorporate a stellar mass function, stellar evolution and the tidal field of a host galaxy. We find that extended clusters can arise naturally within a weak tidal field provided that the tidal radius is filled at the start of the evolution. Differences in the initial tidal filling-factor can produce marked differences in the subsequent evolution of clusters and the size-scales that would be observed. These differences are more marked than any produced by internal evolution processes linked to the properties of cluster binary stars or the action of an intermediate-mass black hole, based on models performed in this work and previous work to date. Models evolved in a stronger tidal field show that extended clusters cannot form and evolve within the inner regions of a galaxy such as M31. Instead our results support the suggestion many extended clusters found in large galaxies were accreted as members of dwarf galaxies that were subsequently disrupted. Our results also enhance the recent suggestion that star clusters evolve to a common sequence in terms of their size and mass.Comment: 12 pages, 8 figures, accepted by MNRA

    An HST/ACS View of the Inhomogeneous Outer Halo of M31

    Full text link
    We present a high precision photometric view of the stellar populations in the outer halo of M31, using data taken with the Hubble Space Telescope Advanced Camera for Surveys (HST/ACS). We analyse the field populations adjacent to 11 luminous globular clusters which sample the galactocentric radial range 18 < R < 100 kpc and reach a photometric depth of ~2.5 magnitudes below the horizontal branch (m_F814W ~27 mag). The colour-magnitude diagrams (CMDs) are well populated out to ~60 kpc and exhibit relatively metal-rich red giant branches, with the densest fields also showing evidence for prominent red clumps. We use the Dartmouth isochrones to construct metallicity distribution functions (MDFs) which confirm the presence of dominant populations with = -0.6 to -1.0 dex and considerable metallicity dispersions of 0.2 to 0.3 dex (assuming a 10 Gyr population and scaled-Solar abundances). The average metallicity over the range 30 - 60 kpc is [Fe/H] = -0.8 +/- 0.14 dex, with no evidence for a significant radial gradient. Metal-poor stars ([Fe/H] <= -1.3) typically account for < 10-20 % of the population in each field, irrespective of radius. Assuming our fields are unbiased probes of the dominant stellar populations in these parts, we find that the M31 outer halo remains considerably more metal-rich than that of the Milky Way out to at least 60 kpc.Comment: Accepted for publication in MNRAS. 10 pages, 6 figure

    Young accreted globular clusters in the outer halo of M31

    Full text link
    We report on Gemini/GMOS observations of two newly discovered globular clusters in the outskirts of M31. These objects, PAndAS-7 and PAndAS-8, lie at a galactocentric radius of ~87 kpc and are projected, with separation ~19 kpc, onto a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 +/- 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.Comment: 14 pages, 8 figures, accepted for publication in MNRA

    Newly-Discovered Globular Clusters in NGC 147 and NGC 185 from PAndAS

    Full text link
    Using data from the Pan-Andromeda Archaeological Survey (PAndAS), we have discovered four new globular clusters (GCs) associated with the M31 dwarf elliptical (dE) satellites NGC 147 and NGC 185. Three of these are associated with NGC 147 and one with NGC 185. All lie beyond the main optical boundaries of the galaxies and are the most remote clusters yet known in these systems. Radial velocities derived from low resolution spectra are used to argue that the GCs are bound to the dwarfs and are not part of the M31 halo population. Combining PAndAS with UKIRT/WFCAM data, we present the first homogeneous optical and near-IR photometry for the entire GC systems of these dEs. Colour-colour plots and published colour-metallicity relations are employed to constrain GC ages and metallicities. It is demonstrated that the clusters are in general metal poor ([Fe/H] < -1.25 dex), while the ages are more difficult to constrain. The mean (V-I)0_0 colours of the two GC systems are very similar to those of the GC systems of dEs in the Virgo and Fornax clusters, as well as the extended halo GC population in M31. The new clusters bring the GC specific frequency (S_N) to ~9 in NGC 147 and ~5 in NGC 185, consistent with values found for dEs of similar luminosity residing in a range of environments.Comment: 14 pages, 6 figures, 6 tables, accepted for publication in MNRA

    Dynamics in the satellite system of Triangulum: Is AndXXII a dwarf satellite of M33?

    Full text link
    We present results from a spectroscopic survey of the dwarf spheroidal And XXII and the two extended clusters EC1 and EC2. These three objects are candidate satellites of the Triangulum galaxy, M33, which itself is likely a satellite of M31. We use the DEep Imaging Multi-Object Spectrograph mounted on the Keck-II telescope to derive radial velocities for candidate member stars of these objects and thereby identify the stars that are most likely actual members. Eleven most probable stellar members (of 13 candidates) are found for AndXXII. We obtain an upper limit of sigma_v < 6.0 km s-1 for the velocity dispersion of AndXXII, [Fe/H] ~ -1.6 for its metallicity, and 255pc for the Plummer radius of its projected density profile. We construct a colour magnitude diagram for AndXXII and identify both the red giant branch and the horizontal branch. The position of the latter is used to derive a heliocentric distance to And XXII of 853 pm 26 kpc. The combination of the radial velocity, distance, and angular position of AndXXII indicates that it is a strong candidate for being the first known satellite of M33 and one of the very few examples of a galactic satellite of a satellite. N-body simulations imply that this conclusion is unchanged even if M31 and M33 had a strong encounter in the past few Gyr. We test the hypothesis that the extended clusters highlight tidally stripped galaxies by searching for an excess cloud of halo-like stars in their vicinity. We find such a cloud for the case of EC1 but not EC2. The three objects imply a dynamical mass for M33 that is consistent with previous estimates.Comment: 14 pages, 14 figures, revised for MNRAS publicatio

    Major Substructure in the M31 Outer Halo: the South-West Cloud

    Full text link
    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ~100 kpc from the centre of M31, and extends for at least ~50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793 +/- 45 kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 +/- 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 +/- 0.15. We measure a brightness for the Cloud of M_V = -12.1 mag; this is ~75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    The kinematic footprints of five stellar streams in Andromeda's halo

    Get PDF
    (abridged) We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within streamC, all discovered in the halo of M31 from our CFHT/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70% of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in streamCr/p and streamD to trace the velocity gradient along the streams. For the cluster EC4, candidate member stars with average [Fe/H]~-1.4 (Fe/H_spec=-1.6), are found at v_{hel}=-285 km/s suggesting it could be related to streamCp. No similarly obvious cold kinematic candidate is found for streamD, although candidates are proposed in both of two spectroscopic pointings along the stream (both at -400 km/s). Spectroscopy near the edge of streamB suggests a likely kinematic detection, while a candidate kinematic detection of streamA is found (plausibly associated to M33 rather than M31). The low dispersion of the streams in kinematics, physical thickness, and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar halo is largely made up of multiple kinematically cold streams.Comment: 19 pages, 12 figures, accepted in MNRAS. High resolution version, with fig10 here: http://www.ast.cam.ac.uk/~schapman/streams.pd
    corecore