41 research outputs found

    Die Tierwelt der Bergbaufolgelandschaften

    Get PDF
    Bei den im Rahmen des Forschungsverbundes erfolgten faunistischen Untersuchungen stand die Charakterisierung der unterschiedlichen, vor allem aber der wertvollen Biotoptypen der Braunkohlenfolgelandschaft mit Hilfe der dort lebenden Tierarten bzw. Artengemeinschaften im Vordergrund. Es wurden Tiergruppen bearbeitet, die zum einen ein hohes indikatorisches Potential besitzen, zum anderen unterschiedliche ökologische Hierachieebenen repräsentieren. Eine Auswertung der Ergebnisse erfolgte zumeist auf der Ebene der Biotoptypengruppen (siehe Heyde; Jakob; Köck; Reuter im gleichen Heft)

    Molecular dynamics simulations of glassy polymers

    Full text link
    We review recent results from computer simulation studies of polymer glasses, from chain dynamics around the glass transition temperature Tg to the mechanical behaviour below Tg. These results clearly show that modern computer simulations are able to address and give clear answers to some important issues in the field, in spite of the obvious limitations in terms of length and time scales. In the present review we discuss the cooling rate effects, and dynamic slowing down of different relaxation processes when approaching Tg for both model and chemistry-specific polymer glasses. The impact of geometric confinement on the glass transition is discussed in detail. We also show that computer simulations are very useful tools to study structure and mechanical response of glassy polymers. The influence of large deformations on mechanical behaviour of polymer glasses in general, and strain hardening effect in particular are reviewed. Finally, we suggest some directions for future research, which we believe will be soon within the capabilities of state of the art computer simulations, and correspond to problems of fundamental interest.Comment: To apear in "Soft Matter

    Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale

    Get PDF
    Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics

    Some Causes of the Variable Shape of Flocks of Birds

    Get PDF
    Flocks of birds are highly variable in shape in all contexts (while travelling, avoiding predation, wheeling above the roost). Particularly amazing in this respect are the aerial displays of huge flocks of starlings (Sturnus vulgaris) above the sleeping site at dawn. The causes of this variability are hardly known, however. Here we hypothesise that variability of shape increases when there are larger local differences in movement behaviour in the flock. We investigate this hypothesis with the help of a model of the self-organisation of travelling groups, called StarDisplay, since such a model has also increased our understanding of what causes the oblong shape of schools of fish. The flocking patterns in the model prove to resemble those of real birds, in particular of starlings and rock doves. As to shape, we measure the relative proportions of the flock in several ways, which either depend on the direction of movement or do not. We confirm that flock shape is usually more variable when local differences in movement in the flock are larger. This happens when a) flock size is larger, b) interacting partners are fewer, c) the flock turnings are stronger, and d) individuals roll into the turn. In contrast to our expectations, when variability of speed in the flock is higher, flock shape and the positions of members in the flock are more static. We explain this and indicate the adaptive value of low variability of speed and spatial restriction of interaction and develop testable hypotheses

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Baubetriebliche Analyse von selbstverdichtendem Beton

    No full text

    Fatigue Design of Hydraulic Turbine Runners

    No full text
    Turbine runners experience start-stop cycles and vibration cycles. Cracks initiated from service or manufacturing defects and propagated by start-stop cycles become critical when the stress intensity range due to vibrational loading exceeds the threshold for fatigue crack growth. In Francis turbine runners, semi-elliptical surface cracks tend to propagate from the quarter-circular transition of the welded T-joint transition between the blade and the band or crown. Assuming a crack to grow under a constant stress amplitude equal to that at the most highly loaded location at the welded joint between the blade and the band or crown of a Francis turbine runner yields a conservative estimate of the life of the runner. A more accurate prediction of fatigue life is obtained by considering the growth of a crack in the real, inhomogeneous stress field. For an idealised T-joint under pure bending, the stress field has been determined by means of plane strain finite element analysis. Finite element models of the entire Francis runner are built with respect to the calculation of fluid dynamic properties. Since in these models geometry transitions are modelled as a sharp notch, both a finite and a zero transition radius have been modelled, and the influence of the mesh size on the maximum stress has been investigated. For relatively small cracks, it is shown that the structural component geometry does not remarkably influence the stress intensity factor values, provided that the stress field in the vicinity of the crack is approximately the same. Therefore, in order to simplify the stress intensity factor retrieval and to generate a solution of extended applicability, a cracked finite-thickness plate is examined instead of the actual T-joint geometry. The stress intensity factors along the front of a semi-elliptical surface crack in such a plate are determined by means of an analysis using finite quarter-point wedge elements for different elementary loading conditions that can be employed to model the actual stress field at the expected crack location in the examined T-joint. By applying the superposition principle and the power series expansion of the actual stress field due to the load applied to the T-joint considered, an approximate stress intensity factor for the cracked T-joint has been obtained. The growth of semi-elliptic surface cracks in the stress field of the T-joint has been analysed using stress intensity factors of both own and literature solutions and employing a two-parameter model based on the Paris law. The theoretical fatigue crack growth predictions are in acceptable agreement with observations from experimental fatigue testing. Furthermore, an iterative shape optimisation methodology has been applied to the two locations of stress concentration that show the highest local stress amplitudes and therewith are the most critical areas for fatigue of the Francis turbine runner. It is shown that stress concentration due to bending can be virtually eliminated. Large-scale geometry changes minimise stress concentration but create shapes that are sensitive to manufacturi ing tolerances. Fracture-mechanical fatigue crack growth methodology calculations and experimental fatigue testing of moderately optimised shapes revealed that the runner’s fatigue properties could be increased by factors 1.5–1.8 and 2–2.5, respectively
    corecore