33 research outputs found

    Adjunct Faculty: Professional, Competent, Loyal, and Committed: Our Hidden Resource

    Get PDF

    The Extracytoplasmic Domain of the Mycobacterium tuberculosis Ser/Thr Kinase PknB Binds Specific Muropeptides and Is Required for PknB Localization

    Get PDF
    The Mycobacterium tuberculosis Ser/Thr kinase PknB has been implicated in the regulation of cell growth and morphology in this organism. The extracytoplasmic domain of this membrane protein comprises four penicillin binding protein and Ser/Thr kinase associated (PASTA) domains, which are predicted to bind stem peptides of peptidoglycan. Using a comprehensive library of synthetic muropeptides, we demonstrate that the extracytoplasmic domain of PknB binds muropeptides in a manner dependent on the presence of specific amino acids at the second and third positions of the stem peptide, and on the presence of the sugar moiety N-acetylmuramic acid linked to the peptide. We further show that PknB localizes strongly to the mid-cell and also to the cell poles, and that the extracytoplasmic domain is required for PknB localization. In contrast to strong growth stimulation by conditioned medium, we observe no growth stimulation of M. tuberculosis by a synthetic muropeptide with high affinity for the PknB PASTAs. We do find a moderate effect of a high affinity peptide on resuscitation of dormant cells. While the PASTA domains of PknB may play a role in stimulating growth by binding exogenous peptidoglycan fragments, our data indicate that a major function of these domains is for proper PknB localization, likely through binding of peptidoglycan fragments produced locally at the mid-cell and the cell poles. These data suggest a model in which PknB is targeted to the sites of peptidoglycan turnover to regulate cell growth and cell division

    The brain is a DJ using neuropeptides as sensory crossfaders

    Get PDF
    Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.status: publishe

    Impacts of fire and prospects for recovery in a tropical peat forest ecosystem

    Get PDF
    Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia

    Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

    Get PDF
    Non peer reviewe
    corecore