13 research outputs found

    Ocean convergence and the dispersion of flotsam

    Full text link
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Ocean convergence and the dispersion of flotsam

    Get PDF
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    An Optimization Approach to Modeling Sea Ice Dynamics. Part 1: Lagrangian Framework

    No full text

    Research Overview of the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE)

    Get PDF
    CARTHE (http://carthe.org/) is a Gulf of Mexico Research Initiative (GoMRI) consortium established through a competitive peer-reviewed selection process. CARTHE comprises 26 principal investigators from 14 universities and research institutions distributed across four Gulf of Mexico states and other four states. It fuses into one group investigators with unique scientific and technical knowledge and extensive publications related to oil fate/transport processes, oceanic and atmospheric turbulence, air-sea interactions, tropical cyclones and winter storms, and coastal and nearshore modeling and observations. Our primary goal is to accurately predict the fate of hydrocarbons released into the environment. Achieving this goal is particularly challenging since petroleum releases into the environment interact with natural processes across six orders of magnitude of time and space scales. We are developing a multi-scale modeling tool by incorporating state-of-the-art hydrophysical models, each applicable for a restricted range of scales, into a single, interconnected modeling system to predict the physical dispersal of hydrocarbons across scales ranging from the microscale at the wellhead to oceanic and atmospheric mesoscales. CARTHE is also conducting novel in-situ observations and laboratory experiments specifically designed for quantifying submesoscale dispersion as well as for both model validation and parameterization. Finally, we are providing a robust set of uncertainty metrics and analysis tools to assess model performance and quantify predictive uncertainty

    Data assimilation considerations for improved ocean predictability during the Gulf of Mexico Grand Lagrangian Deployment (GLAD)

    No full text
    •Extensive drifter observations allow new understanding to data assimilation.•Background error covariance is the point at which assumptions have historically been placed.•Components of background error covariance are tested to determine impact.•Amplitude of background error covariance is a critical factor.•Time correlation in background errors must be considered in 3DVar and 4DVar.Ocean prediction systems rely on an array of assumptions to optimize their data assimilation schemes. Many of these remain untested, especially at smaller scales, because sufficiently dense observations are very rare. A set of 295 drifters deployed in July 2012 in the north-eastern Gulf of Mexico provides a unique opportunity to test these systems down to scales previously unobtainable. In this study, background error covariance assumptions in the 3DVar assimilation process are perturbed to understand the effect on the solution relative to the withheld dense drifter data. Results show that the amplitude of the background error covariance is an important factor as expected, and a proposed new formulation provides added skill. In addition, the background error covariance time correlation is important to allow satellite observations to affect the results over a period longer than one daily assimilation cycle. The results show the new background error covariance formulations provide more accurate placement of frontal positions, directions of currents and velocity magnitudes. These conclusions have implications for the implementation of 3DVar systems as well as the analysis interval of 4DVar systems
    corecore