142 research outputs found

    Lagrangian coherent structures in n-dimensional systems

    Get PDF
    Numerical simulations and experimental observations reveal that unsteady fluid systems can be divided into regions of qualitatively different dynamics. The key to understanding transport and stirring is to identify the dynamic boundaries between these almost-invariant regions. Recently, ridges in finite-time Lyapunov exponent fields have been used to define such hyperbolic, almost material, Lagrangian coherent structures in two-dimensional systems. The objective of this paper is to develop and apply a similar theory in higher dimensional spaces. While the separatrix nature of these structures is their most important property, a necessary condition is their almost material nature. This property is addressed in this paper. These results are applied to a model of Rayleigh-BĂ©nard convection based on a three-dimensional extension of the model of Solomon and Gollub

    Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing

    Get PDF
    Very High-frequency (VHF) radar technology produces detailed surface velocity maps near the surface of coastal waters. The use of measured velocity data in environmental prediction, however, has remained unexplored. In this paper, we uncover a striking flow structure in coastal radar observations along the coast of Florida. This structure governs the spread of organic contaminants or passive drifters released in the area. We compute the Lyapunov exponents of the VHF radar data to determine optimal release windows in which contaminants are advected efficiently away from the coast and we show that a VHF radar-based pollution release scheme using the hidden flow structure reduces the effect of industrial pollution in the coastal environment

    Time-Dependent 2-D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures

    Full text link
    This paper presents an approach to a time-dependent variant of the concept of vector field topology for 2-D vector fields. Vector field topology is defined for steady vector fields and aims at discriminating the domain of a vector field into regions of qualitatively different behaviour. The presented approach represents a generalization for saddle-type critical points and their separatrices to unsteady vector fields based on generalized streak lines, with the classical vector field topology as its special case for steady vector fields. The concept is closely related to that of Lagrangian coherent structures obtained as ridges in the finite-time Lyapunov exponent field. The proposed approach is evaluated on both 2-D time-dependent synthetic and vector fields from computational fluid dynamics

    Dynamically Consistent Lagrangian Coherent Structures

    Get PDF

    Nanofiber-Based Double-Helix Dipole Trap for Cold Neutral Atoms

    Full text link
    A double-helix optical trapping potential for cold atoms can be straightforwardly created inside the evanescent field of an optical nanofiber. It suffices to send three circularly polarized light fields through the nanofiber; two counterpropagating and far red-detuned with respect to the atomic transition and the third far blue-detuned. Assuming realistic experimental parameters, the transverse confinement of the resulting potential allows one to reach the one-dimensional regime with cesium atoms for temperatures of several \muK. Moreover, by locally varying the nanofiber diameter, the radius and pitch of the double-helix can be modulated, thereby opening a realm of applications in cold-atom physics.Comment: 9 pages, 4 figure

    Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dynamics

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1021/es0630691High-frequency (HF) radar technology produces detailed velocity maps near the surface of estuaries and bays. The use of velocity data in environmental prediction, nonetheless, remains unexplored. In this paper, we uncover a striking flow structure in coastal radar observations of Monterey Bay, along the California coastline. This complex structure governs the spread of organic contaminants, such as agricultural runoff which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal environment in the bay. We predict the motion of the Lagrangian flow structures from finite-time Lyapunov exponents of the coastal HF velocity data. From this prediction, we obtain optimal release times, at which pollution leaves the bay most efficiently.Office of Naval Research grant N00014-01-1-0208ASAP MURI N00014-02-1-0826Office of Naval Research grant N00014-01-1-0208ASAP MURI N00014-02-1-082

    Open-boundary modal analysis: Interpolation, extrapolation, and filtering

    Get PDF
    Increasingly accurate remote sensing techniques are available today, and methods such as modal analysis are used to transform, interpolate, and regularize the measured velocity fields. Until recently, the modes used did not incorporate flow across an open boundary of the domain. Open boundaries are an important concept when the domain is not completely closed by a shoreline. Previous modal analysis methods, such as those of Lipphardt et al. (2000), project the data onto closed-boundary modes, and then add a zero-order mode to simulate flow across the boundary. Chu et al. (2003) propose an alternative where the modes are constrained by a prescribed boundary condition. These methods require an a priori knowledge of the normal velocity at the open boundary. This flux must be extrapolated from the data or extracted from a numerical model of a larger-scale domain, increasing the complexity of the operation. In addition, such methods make it difficult to add a threshold on the length scale of open-boundary processes. Moreover, the boundary condition changes in time, and the computation of all or some modes must be done at each time step. Hence real-time applications, where robustness and efficiency are key factors, were hardly practical. We present an improved procedure in which we add scalable boundary modes to the set of eigenfunctions. The end result of open-boundary modal analysis (OMA) is a set of time and data independent eigenfunctions that can be used to interpolate, extrapolate and filter flows on an arbitrary domain with or without flow through segments of the boundary. The modes depend only on the geometry and do not change in time

    Nonuniform Coverage and Cartograms

    Full text link

    Collective motion, sensor networks, and ocean sampling

    Get PDF
    Author Posting. © IEEE, 2007. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in Proceedings of the IEEE 95 (2007): 48-74, doi:10.1109/jproc.2006.887295.This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure
    • …
    corecore