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ABSTRACT 300194: 

 

CARTHE  (http://carthe.org/) is a Gulf of Mexico Research  Initiative (GoMRI)  consor- 

tium established through a competitive peer-reviewed selection process. CARTHE comprises 

26 principal investigators from 14 universities and research institutions distributed across four Gulf 

of Mexico states and other four states. It fuses into one group investigators with unique scientific 

and  technical knowledge and  extensive publications related to oil fate/transport processes, oceanic 

and  atmospheric turbulence, air-sea  interactions, tropical cyclones and winter storms, and coastal 

and nearshore modeling and observations. 

 

Our primary  goal is to accurately predict the fate of hydrocarbons  released  into the 

environment. Achieving this goal is particularly challenging since petroleum releases into the 

environment interact with natural processes across six orders of magnitude of time and space 

scales. We are developing a multi-scale modeling tool by incorporating state-of-the-art 

hydrophysical  models, each applicable for a restricted range of scales, into a single, interconnected 

modeling system to predict the physical dispersal of hydrocarbons  across scales ranging from the 

microscale at the wellhead to oceanic and atmospheric mesoscales. CARTHE  is also conducting 

novel in-situ observations and laboratory experiments  specifically designed for quantifying 

submesoscale dispersion as well as for both model validation and parameterization.  Finally, we are 

providing  a robust set of uncertainty metrics and analysis tools to assess model performance and 

quantify predictive uncertainty. 
 

HYDROCARBON TRANSPORT IN THE ENVIRONMENT: 

 

When the Deepwater Horizon (DWH)  oil drilling platform at BP’s Macondo well exploded 

and sank on April 20, 2010, an unprecedented oil spill resulted.  Unlike previous spills, the source 

was located at a depth of more than 1500 m. This fact complicates not only the science of 

observing and modeling the released hydrocarbons,  it also added layers of complexity and 

difficulty to the response and mitigation effort.  Over the course of 87 days, crude oil was released 

into the Gulf of Mexico (GoM), before the well was finally successfully sealed. The extent of the 

environmental impact remains largely unknown.  The DWH incident was the largest accidental oil 

spill into marine waters with an estimated 4.4 million barrels released into the DeSoto Canton 

(Crone and  Tolstoy, 2010).  The surface plume alone resulted in wide-spread ecological and 

economic disruption for four states. A significant portion of the spill, however, likely never reached 

the surface, as it was entrained into the water column, where it is hard to track and assess. 

 

Forecasting efforts using ocean models, needed for planning an efficient and effective 

response, retained large (often unknown) uncertainties because of the challenging nature of the 

transport problem.  As shown schematically in Fig. 1, the overall physical dispersion of buoyant 

contaminants released at the sea floor (as in the Deepwater Horizon event) incorporates a large 

number  of interacting processes which take place over a vast range of spatial and temporal scales. 

Readily identifiable stages of transport include: 

a) The rise of the oil, gas, and dispersant mixture in the water column, and subsurface 

dispersion due to turbulent interactions with deep ocean stratification. 

b) Surface dispersion  under  the action of Langmuir  circulation, mixed layer  dynamics, river  

outflows, mesoscale currents, wind  and  waves,  including  tropical storm conditions.  In 

this paper,  the term dispersion  is used to describe the spreading  of tracer patches by the 

http://carthe.org/
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underlying  velocity field, as opposed to the break up of oil into small droplets, as 

commonly understood in oil literature (Boufadel et al., 2006). 

c) Transport across the inner shelf, complex coastal geometry, and the surf zone. 

d) Release of gas into the atmospheric boundary  layer by air-sea interaction processes, as well 

as burning  of surface oil. 

e) Transport of gas in the atmosphere. 
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Figure  1:  Schematic depiction of processes and modeling components needed to address the transport problem in deep 

water  oil blow-outs  near coastal  regions.  (OGCM = Ocean General Circulation Model; AGCM = Atmospheric 

General Circulation Model) 

 

Producing  better and more useful predictions of hydrocarbon  transport faces three main 

challenges:  (1) The  physics affecting the problem  ranges over many  spatial and  temporal scales. 

No one model can adequately resolve all of these.  (2) Existing observations are inadequate to 

describe the complex processes that oil undergoes in the ocean or how the presence of oil may 

change the physical properties of the surrounding  fluid. (3) The uncertainties in available 

predictions are not well estimated and typically only available ex post facto. 

 

The main goal of Consortium  for Advanced Research on Transport  of Hydrocarbon in the 

Environment (CARTHE) is to accurately predict the fate of hydrocarbons  released into the 

environment, thereby guiding risk management and response efforts to minimize damage to human  

health, the economy, and the environment. 

To accomplish this goal, CARTHE is following an approach which relies on three 

elements:  

1) The  incorporation  of a number  of state of the art geo-physical models into  a single, 

interconnected modeling tool to predict the physical dispersal of contaminants across a vast 

range of spatial and temporal scales, and physical processes. 

2) A dedicated  set  of in-situ  and  laboratory  experiments  specifically designed for both 

model validation and parameterization. 

3) A robust set of uncertainty metrics and analysis tools to assess model performance and 

quantify predictive uncertainty. 
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DESCRIPTION OF INDIVIDUAL MODEL SYSTEM COMPONENTS: 

 

CARTHE  scientific modeling instrument consists of the following components:  (a)  Large 

Eddy Simulations for multi-phase plume dynamics, (b) multi-phase air-sea interface model, (c) 

regional ocean general circulation models (OGCMs),  (d) coastal models, (e) inner shelf and  surf 

zone models,  and  (f ) a fully-coupled modeling system.   Some of these  modeling components are 

described in the following. 
 

Large Eddy Simulations  of Subsurface Plume Dynamics 

We model subsurface and near-surface dynamics using Large Eddy Simulation (LES). This 

approach  lies between the extremes of direct numerical simulation, in which all turbulence is 

resolved, and Reynolds-averaged  Navier-Stokes implementations, in which all turbulence is 

parameterized.  LES models integrate the full Navier-Stokes equations without resorting to 

significant simplifications or parameterizations.  In particular, the hydrostatic approximation, which 

prevents  fast vertical  motions,  is avoided.  The underlying  concept relies on the fact that in 

turbulent flow fields large eddies transport smaller-scale disturbances  with them as they migrate 

through the flow. These large eddies are fully resolved in the computation. 

 

After exploring the dynamics  of single-phase buoyant plumes (e.g., Fig. 2), CARTHE’s 

plume modeling group made three important advances.  First, by modifying the Boussinesq 

equations, we were able to represent the dynamics of bubbly  buoyant plumes and obtained multiple 

intrusion layer  formations that are  characteristic of two-phase plumes  (Fig.  3). Second, 

simulations have  been conducted with buoyant, gas and  mixed plumes  and  their differences have  

been quantified  in great  detail.   Third,  simulations  of buoyant  plumes  in the presence of rotation 

indicate that sustained deep blowouts can significantly modify the oceanic circulation surrounding  

the plume. 

 

 

 
  

Figure 2:  (Left panel) Large scale subsurface structure of a single-phase buoyant plume interacting with density 

gradients at the base of the near-surface mixed layer. 
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Figure 3: Convergence of two-phase plume simulations in a stratified environment as a function of the number of mesh 

points.   From left  to right:  2.5 × 106, 12 × 106, 32 × 106, 48 × 106, 125 × 106  mesh points.  The blue color shows 

the gas concentration  surface, while orange is a passive tracer released to track the oil phase.  The domain dimensions 

are 50D × 50D × 100D where D is the pipe diameter. 
 

Multi-Phase  Air-Sea Interface  Modeling 

The sea surface altering properties of oil (with and without applied dispersants) affect 

horizontal spreading  of oil spills as well as their vertical mixing in the upper  ocean and 

evaporation into the atmosphere.  The  presence of oil on the sea surface is known to dampen 

surface waves even in very strong winds.  Under hurricane  conditions, a two-phase mixture 

consisting of air bubbles and spray particles develops at the air-sea interface, which significantly 

changes the regime of air-sea interaction (Soloviev and Lukas, 2014). However, little is known 

about the physical mechanisms  involved in the disruption of the air-sea interface under hurricane  

force winds. 

 

CARTHE  investigators have developed a two-phase model of the air-sea interface using 

the Volume of Fluid multi-phase capabilities of ANSYS Fluent (Soloviev and Lukas, 2010). This 

numerical model reveals the effect of direct disruption of the air-sea interface under very strong 

winds, resembling the Kelvin-Helmholtz instability, and the formation of a two-phase environment 

(Fig.  4).  We have also extended this analysis  to include oil.  Accompanying laboratory 

experiments are being conducted at the University of Miami’s Air-Sea Interaction Saltwater Tank  

using hurricane  force winds as well as oil. 
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Figure 4: A numerical experiment with an initially flat air-sea interface illustrates the formation of the two-phase 

environment under hurricane force winds. (After Soloviev and Lukas (2010).) 

Coupled Atmosphere-Wave-Ocean  System 

The  atmospheric and  oceanic circulations, particularly in extreme weather events such as 

hurricanes  and  winter storms,  are  key factors affecting hydrocarbon  transport.   A high-

resolution fully coupled atmosphere-wave-ocean regional model is required to produce accurate 

circulation forecasts and to assess the range of variability in wind speed, surface waves, and ocean 

currents from climatologically normal to storm-induced extreme conditions. The research group at 

SMAS/UM has developed a cloud-resolving (1 km grid spacing) coupled atmosphere-wave-ocean 

model that has been evaluated using observations from three major tropical cyclone field programs:  

the Coupled Boundary  Layer Air-Sea Transfer  (CBLAST) in the Atlantic, the Hurricane 

Rainbands  and Intensity Change Experiment (RAINEX),  and the Impact of Typhoons  on the 

Ocean in the Pacific (ITOP). 

 

CARTHE  investigators are developing a physically based and computationally efficient 

coupling at the air-sea interface that is flexible for use in a multi-model system and portable for 

transition to the next generation research  and  operational coupled  atmosphere-wave- ocean-land 

models. To explore new air-sea coupling physics, we developed the new University of Miami 

Wave Model (UMWM, Donelan et al. (2012)).  UMWM is a predictive model for wave energy and 

wind stress on the interface between a liquid and a gas, providing the full wave energy spectrum, 

stress vectors, and dissipation rate at each time step at chosen grid points.  It was developed 

specifically to enable stress coupling in coupled hurricane  models. 

 

The  coupled modeling system, denoted University of Miami Coupled  Model (UMCM, 

Chen  et al. (2013)),  consists  of atmospheric,  wave,  and  ocean model components.   These are 

currently the high-resolution, non-hydrostatic, multi-nested grid Weather Research and Forecast 

(WRF)  model, UMWM and WW3, and the Hybrid Coordinate Ocean Model (HYCOM).  We use 

a subdomain  of the eddy-resolving  (1/24◦, 4 km mid-latitude resolution) Atlantic HYCOM,  which  

includes  the GoM and  Caribbean  Sea,  with data assimilation. Examples of the coupled model 

simulation of tropical cyclones are shown in Fig. 5. 
 

 
 



 

 

300194 

2014 INTERNATIONAL OIL SPILL CONFERENCE 

 

550 
 

 
 

Figure 5: Coupled WRF-HYCOM forecast of pre- and post-Hurricane Katrina (2005) SST and surface current (left 

panels).  The pre-and post-Katrina vertical cross-sections of ocean temperature (South-North A-B, and West-East C-D) 

over the Loop Current and warm eddy in the GoM are shown in the right panels. The WRF EnKF data assimilation was 

used in this coupled model forecast.  Sections indicate a significant deepening/cooling of the mixed layer over the 

northern GoM and near Florida coastal regions after the passage of Katrina. 

 
 

Coastal  Modeling 

Coastal models must faithfully reproduce tidal circulation, the entire wave environment 

from generation to dissipation, and the wind forcing that pushes oil along the surface of the water 

column.  These models must also provide a high-resolution depiction of the entire domain of 

interest, from deeper waters to the relatively shallow continental shelf to the marshes, rivers and 

man-made  channels of the complex nearshore environment. 

 

The Advanced CIRCulation (ADCIRC)  model has been applied to coupled wind, 

windwave, tide, and  riverine  flow simulations on unstructured meshes in the GoM, specifically 

focusing on recent hurricanes  which  have  made  landfall  in southern Louisiana.   For  this 

purpose, a high resolution description of the GoM, continental shelf, Mississippi River delta, and 

southern Louisiana coast has been developed over the past decade; see left panel of Fig. 6. This 

shows a plot of the domain and finite element mesh focusing on southern Louisiana and 

Mississippi.  Here the elements  range in size from hundreds  of meters in the deeper waters of the 

GoM to around  30-50 meters in the nearshore,  channels,  rivers, wetlands, and levee systems. The 

ADCIRC model has been applied extensively to hurricane  forecasts and hindcasts (Dietrich et al., 

2010) and is now used routinely for the development of floodplain risk assessments and the design 

of levee protection systems.  ADCIRC has been coupled recently to the Simulating WAves 

Nearshore (SWAN)  model, so that both models run on the same unstructured meshes and on the 

same computational cores. The resulting SWAN+ADCIRC model is well-positioned to simulate 

accurately and efficiently the propagation of wind-waves, tides, and storm surge onto the 

continental shelf, as well as their dissipation in the nearshore. 
 

 
 

 
Figure  6:  (Left panel) Plot of the ADCIRC  computational domain  in the southern Louisiana region.  The colors 

represent bathymetry and the finite element mesh is overlaid.  (Right panel) Comparison between  observed (solid blue) 

and modeled (hatched red) spill coverage after 72hr of simulation in the northern GoM. 

 
SWAN+ADCIRC was used in an operational mode during the DWH spill event (Fig. 6). Wind  

advisories  provided  forcing to both models, which produced  fields of wave and  circulation across 

the northern GoM coastline.   These  fields were then taken as input for a Lagrangian  particle-
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tracking  model,  which was used to simulate  the movement  of the oil spill.  The  currents contain 

the effects of wave dissipation in the nearshore  and  were combined  with  2% of the wind speeds 

to better simulate  the movement  of the oil layer  over the water column.   This  particle-tracking 

model has been evaluated against the observed coverage from satellite images (Dietrich et al., 

2012). 

Under CARTHE,  the SWAN+ADCIRC multi-physics code is undergoing rigorous 

development and testing for the modeling of 3D flow and transport in coastal environments.  This 

development is leading to improved barotropic/baroclinic circulation and wave models with 

unstructured finite element discretizations, which are capable of resolving near-shore physics and  

coastal features, and  model exchanges between the coastal ocean, bays,  estuaries and rivers.  In 

addition, improved oil transport capabilities are being investigated which will allow for a more 

complete picture of surface/subsurface oil movement, biogeochemical processes, dissipation, and 

other physics which are currently lacking in 3D oil spill models. 
 

DIRECTED FIELD EXPERIMENTS: 

 

Recent realization of the transport impact of energetic submesoscale  features, i.e. fronts, 

filaments, ageostrophic instabilities, and coherent vortices on spatial scales ranging from 100 m to 

10 km and temporal variability  scales of less than 1 day, give a strong motivation to obtain  a 

highly resolved depiction  of the velocity  field at these  scales for oil spills.  Data on  which  to 

base  subgridscale  closures  and  perform  robust  model-data comparisons  are virtually non-

existent.   Hence the accuracy  of ocean  models  at the submesoscale  is not verified, and  the 

ability of current numerical  models to accurately predict the Lagrangian dispersion  properties,  

essential for oil spill transport forecasts,  has  yet to be thoroughly tested.  Given the unique 

regional conditions in the GoM (Loop Current, Mississippi River Plume,  hurricanes,  etc.), 

experiments specific to this region are needed.  Field experiments conducted by CARTHE  are 

briefly reviewed next. 
 

Grand Lagrangian Deployment  (GLAD) 

CARTHE’s first major experiment, denoted Grand  LAgrangian  Deployment (GLAD),  

was designed to explore transport pathways near the DWH site.  GLAD is the largest synoptic 

surface drifter deployment in oceanography to date, comprising some 317 Lagrangian instruments 

that have been deployed in fractal triplet arrays over 10 days in the Summer of 2012. GLAD relied 

on the near-simultaneous deployment of a large number  of drifters to quantify upper ocean 

dispersion. 
 

The  advective transport and  stirring of contaminants by  ocean currents produces  an 

inherently  multi-scale  phenomenon  (Jones et al., 2011); the trajectories  of tracer-marked fluid 

parcels reflect the time-integrated effects of a velocity field over a wide range of scales (Olascoaga  

and  Haller, 2012).  The  nature of flows over the spatial range  from 100 m to hundreds  of km,  or 

submesoscales  (Thomas  et al.,  2008), poses the main  frontier in our theoretical understanding of 

oceanic multi-scale turbulent interactions and energy pathways (McWilliams,  2008).  

Submesoscales also influence the transport of biogeochemical tracers (Levy et al., 2012), as well as 

global overturning  circulation important for climatic studies (Fox-Kemper  et al., 2011). 

Development of accurate estimates for pollutant dispersion is of wide public socio-economic 

concern and requires a quantification of the effect of all scales of motion on ocean transport. 
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The  unprecedented data densities revealed  a detailed snapshot of the near  surface velocity 
field in  the summertime DeSoto Canyon  that clearly  indicated the importance of ageostrophic, 

submesocale motions in setting local dispersion rates (Poje et al., 2014). GLAD observations 

allowed the amount of scale-dependent dispersion missing in current operational circulation models 

and satellite altimeter-derived velocity fields to be quantified, and these observations  have  been 

used to assess and  improve  predictive  models and  remote-sensing data sets (Olascoaga et al., 

2013; Arnott et al., 2014; Carrier et al., 2014; Coelho et al., 2014; Jacobs et al., 2014; Berta et al., 

2014). 
 

 
 

 
Figure  7:  (Left panel) Trajectories of GLAD drifters (with two-week tails) superimposed on a image of MODIS SST 

from October 20, 2012.  (Right panel) The scale-dependent finite scale Lyapunov exponent λ(δ) (Poje et al., 2010; 

Haza et al., 2014) from Navy Coastal Ocean Model (NCOM), Hybrid Coordinate Ocean Model (HYCOM) and GLAD 

clusters (S1, L12 and T1).  The Richardson’s regime (λ ∼ δ−2/3 ) and ballistic  regime (λ ∼ δ−1 ) are shown in the 

background. The grey lines indicate the noise associated with the GPS position errors; note that the error is less that the 

measured curves for particle separation scales of δ > 200 m. 

 

 

Rapid Response to the Hercules Incident 

CARTHE  participated in a rapid response effort to the Hercules incident in the summer of 

2013. Our role was to deploy drifters around  the rig to track surface water masses, and to make the 

data available to other consortia in real-time to support decision making for ocean sampling and 

evaluation of circulation models (Fig. 8). The short, yet intense collaborative effort during  this 

incident helped illustrate the utility of deploying drifters to track surface water masses from oil 

spills (Joye et al., 2014). 
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Figure 8: (Left panel) R/V Acadiana cruise track, suggested launch templates and actual drifter deployments.   (Right 

panel) The  state of the drifter cluster after 92 hours of release.   The trajectories have six-hour tails.  The center of mass 

of the cluster shows clear oscillations as well as southward stretching due to an anticyclonic eddy in the Gulf of 

Mexico.  Dark red marks the instantaneous coverage of the cluster while the light red depicts all the regions occupied 

by the drifters.  The arrows show wind data from the NOAA NDBC website (stations SPLL1 & KMDJ). An animation 

is available at: http://carthe.org/hercules_info/carthe_hercules_v2.mov 
 

Surfzone and Coastal  Oil  Pathways  Experiment  (SCOPE) 

The  Surf-zone Coastal  Oil Pathways  Experiment  (SCOPE)  took  place in December  

2013 on the coastline across  the northern tip of the DeSoto Canyon.    This  program  involved 

hundreds  of targeted launches of surface drifters over the inner shelf, dye releases observed from 

aerial  platforms (Fig.  9), high-resolution air-sea  interface observations, upper  ocean turbulence 

measurements, in-situ meteorological data collection, as well as three classes of models (UMCM, 

3D ADCIRC  and NCOM)  that were run  in real-time for forecasting and evaluation purposes.  

One of the significant preliminary  results of SCOPE  is the importance of density fronts from 

estuaries and  over  the shelf in  trapping and  transporting surface material even under highly-

variable  winter storm wind conditions. 

 
Oil  Date and Persistence in the Water Column and Sediments 

The release of oil to the environment left a signature in both the water column and in the 

sediments.  CARTHE  participated in two ocean sampling expeditions in June-July 2012 and June 

2013, during  which participants  and affiliates  took  water  samples, sediment  samples, and 

macro-fauna  samples.  Researchers have linked elevated presence of polycyclic aromatic 

hydrocarbons  (PAHs)  to decreases in stable carbon isotope composition of the sedimentary 

organic material (Rosenheim et al., 2014). This offers a robust and inexpensive way to map the 

effects of an oil spill on the sediment and benthic ecology that can be applied at a scale for 

comparison to dynamic modeling of a spill plume.  Water column samples taken by CARTHE 

scientists and affiliates show the diverse effects of seep hydrocarbon  and river plume effects on the 

dissolved inorganic carbon of the water column.  Being a semi-enclosed sea with a two major  

sources of carbon  in addition to the atmosphere (the Mississippi River and  natural hydrocarbon  

seeps), profiles of stable carbon isotopes and radiocarbon  are variable in space and time.  The lack 

of these types of data before the oil spill precluded useful measurements to determine the relative 

rates of microbial metabolism versus evaporation of the oil in the water column  following the spill,  

http://carthe.org/hercules_info/carthe_hercules_v2.mov
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and  resulted in significant debate.   CARTHE  data will provide a better understanding of the 

baseline conditions in the Gulf of Mexico that can be applied in future spills of this magnitude. 
 

UNCERTAINTY QUANTIFICATION: 

 

Numerical simulations of environmental flows and of pollution transport and fate are 

subject to numerous sources of uncertainty that include incomplete knowledge of initial and 

boundary conditions,  uncertain model parameters,  imperfect models,  and  inconsistent,  sparse,  

and noisy estimates of hydrocarbon location.  It is therefore critical to model these uncertainties in 

the hydrocarbon transport prediction problem and to provide model users with a quantitative 

assessment of the impact of these uncertainties on model results. 

 

The CARTHE  team has been developing and applying Polynomial Chaos (PC)  methods to 

oceanic uncertainty  problem.   In PC  methods,  the uncertain  input data are considered as 

functions of random  variables  with known probability density functions.  The solution’s 

dependence  on those  random  variables  is then expressed  as a truncated series expansion made 

up of a judiciously chosen orthonormal basis for the stochastic space and initially unknown 

coefficients. The unknown coefficients can be determined through a weighted residual formalism 

(Le Maître and Knio, 2010); in particular, the non-intrusive approach  allows the determination of 

these coefficients without code modification and via ensemble simulations with carefully selected 

choices of the random  variables.  Most of the computational burden in PC concerns the estimation 

of the series coefficients, and these are obtained by sampling the model output adaptively (Winokur  

et al., 2013) and non-intrusively (no code modification is necessary making the approach  model-

neutral).  The adaptive sampling ensures the fidelity of the series representation while minimizing 

the number of expensive forward model runs.  Once the series fidelity  is established  it can be used 

in lieu of the model for MonteCarlo sampling, for sensitivity analysis, for estimating statistical 

moments of specific model outputs, and for estimating the gradients of the model dependent 

variables with respect to the uncertain parameters without the use of an adjoint code.  The  

methodology has been applied  to study  the impact  of nesting  (Thacker  et al., 2012) and  initial  

boundary  conditions on HYCOM simulations of the Gulf of Mexico circulation, and to quantify 

parametric uncertainties  in HYCOM’s  mixed  layer  parameterization  (Alexanderian  et al.,  

2012) and drag parameterization during  hurricane  conditions.  Sraj et al. (2013a,b) illustrate how 

PC and observational data can be used in parameter estimation using either Bayesian inference or 

variational methods.  In addition the PC approach  is currently being applied  to analyze 

uncertainties in Lagrangian  oil-fate models and in oil plume models. 
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Figure 9: (Upper panel) Aerial view of a dye release just outside of the surf zone near Ft. Walton Beach, FL, on 

December 13, 2013. (Lower panel) The state of the SCOPE drifter array sampling the Florida panhandle shelf on 

December 17, 2013. The tails are 12h long. 
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MAIN SCIENTIFIC FINDINGS OF CARTHE: 

 

Over the past two years of research activity, CARTHE  conducted two major 

observational programs; GLAD is the largest upper ocean dispersion carried out in oceanography  

to date and  SCOPE  involved an unprecedented simultaneous use of drifters, dye, satellite remote 

sensing and targeted upper-ocean measurements.  In addition, we have participated in a rapid 

response effort to the Hercules rig blow out.  All of these observational programs  included 

multiple modeling streams, both in real time and reanalysis modes. Independently from these 

studies, we are conducting process modeling, laboratory experiments  and measurements at the 

bottom of the ocean. Some of the primary  findings of CARTHE  are summarized  below: 

i. Analysis of drifter dispersion was carried out by computing Lagrangian coherent 

structures using the geodesic method (Haller and Beron-Vera, 2012) from satellite 

altimeter fields during GLAD (summer 2012, Olascoaga et al. (2013)) and the Hercules 

incident (summer  2013). Both studies indicate that mesoscale features have a significant 

effect in constraining drifter motion outside of the DeSoto Canyon  for GLAD and south 

of the continental shelf during Hercules. This result emphasizes the importance of getting 

the mesoscale circulation features in the right place, and the fidelity of data assimilation in 

general circulation models (Jacobs et al., 2014). 

ii. Two-point velocity differences from the GLAD experiment confirm the validity of classic 

turbulence scaling laws at 200m - 50km scales (Poje et al., 2014). The implication of this  

finding is rather significant  in that it demands  observations  spanning  a vast range of 

scales in order to capture the dispersive effect of motions in the ocean.  Our findings allow 

quantification of submesoscale dispersion missing in current operational circulation 

models and satellite altimeter-derived velocity fields. 

iii. CARTHE’s efforts during  both GLAD  and  the Hercules incident demonstrated the 

feasibility and utility of deploying large clusters of drifting instruments to provide 

synoptic observations of spatial variability of the ocean surface velocity field. 

iv. From  GLAD,  we obtained direct diffusivity estimates 100 times greater than those 

typically reported by canonical ocean dye measurements (Okubo,  1970).  This result (Poje 

et al., 2014) implies very high upper ocean shear, and warrants investigation of flows 

within the upper 1m of the ocean, which remain largely unknown to date. 

v. We have shown, through a comparison of satellite altimetry (AVISO) derived surface 

velocity fields and those on the basis of GLAD drifter coverage using a blending method 

that satellite data fails completely in the DeSoto Canton and the nearby  shelf region in 

providing accurate velocities (Berta et al., 2014). 

vi. The influence of a deep/winter surface mixed layer on the underlying mesoscale transport 

barriers was investigated using a high-resolution (1km) ocean model of the GoM. We have 

found that near-surface submesoscale instabilities not only result in the formation of bands  

of surface material but there is also some leakage across transport barriers  associated with 

mesoscale features. 

vii. Using a combination of GLAD drifter data and UMCM, we have concluded that Stokes 

drift plays a significant role in transport. This effect is missing in most ocean models and 

needs to be included for higher accuracy predictions. 

viii. We have discovered that coastal convergence zones, created by estuarine outflows and 

density  fronts,  can  trap and  transport the surface drifters  released  during  SCOPE. This 

result indicates that research needs to be focused on how these convergence zones near the 

oceans surface are created, and be best captured in our numerical models. 
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ix. Multi-scale  downscaling  to model atmospheric  plumes  from the Deepwater  Horizon 

and Hercules events showed that the transport is sensitive to the parameterization of 

turbulent mixing  and  air-sea  interaction.   Also diurnal  variability of winds and  sea 

surface temperature were found to be important for plume predictions. 

x. Using several satellite images during  the early part of the Deepwater Horizon event, 

analytical arguments and  computations, we arrive  at the conclusion that deepwater 

blowouts  can significantly  impact the circulation  around  them and should be considered 

as active participants of the fluid flow. 

xi. The intrusion levels in gas plumes in stratified environments are found to be quite 

sensitive to numerical resolution, requiring large computations for accuracy.  This problem 

is important in order to estimate how much of the deep oil plume gets to the surface, and 

how much remains subsurface. 

xii. Long internal waves propagating along the shallow mixed-layer  base  due  to strong 

summer stratification are shown to impact GLAD drifter motion (Arnott et al., 2014). 

xiii. An international patent was awarded  to the drifter assimilation scheme developed by the 

NRL group in order  to incorporate GLAD data into their operational modeling system 

(also in Carrier  et al. (2014)). 

xiv. Core-top samples taken by CARTHE  researchers,  when compared  to compilation of 

background of carbon isotope data from three decades of measurements of sedimentary 

organic material  in the Gulf of Mexico, show a effects  of the oil spill and  relate  to PAH  

content of the sediments (Rosenheim  et al.,  2014).   These  measurements and 

compilation indicate an inexpensive screening method for incorporation of hydrocarbon 

pollution into benthic communities that can be applied  over large areas and used for 

comparison to surface plume mapping. 
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