112 research outputs found

    Are Peer Effects Present in Residential Solar Installations? Evidence from Minnesota and Wisconsin

    Get PDF
    There are geographic differences in the rate of adoption of residential photovoltaic (PV) solar. Are adoption rates in small scale localities (counties and zip codes) influenced by previous, nearby adoptions? This paper adds to the literature on Peer Effects with an analysis of Minnesota and Wisconsin zip codes. I use residential adoption data from the OpenPV Project in an empirical analysis of social interactions. My findings indicate that there is a small but significant effect of nearby adoptions at the zip code level. These peer effects are shown to be nuanced by policy incentives such as the XCEL Solar Rewards Program. I additionally engage in a case study analysis of the relationship of some localities

    Extreme phase sensitivity in systems with fractal isochrons

    Full text link
    Sensitivity to initial conditions is usually associated with chaotic dynamics and strange attractors. However, even systems with (quasi)periodic dynamics can exhibit it. In this context we report on the fractal properties of the isochrons of some continuous-time asymptotically periodic systems. We define a global measure of phase sensitivity that we call the phase sensitivity coefficient and show that it is an invariant of the system related to the capacity dimension of the isochrons. Similar results are also obtained with discrete-time systems. As an illustration of the framework, we compute the phase sensitivity coefficient for popular models of bursting neurons, suggesting that some elliptic bursting neurons are characterized by isochrons of high fractal dimensions and exhibit a very sensitive (unreliable) phase response.Comment: 32 page

    Global computation of phase-amplitude reduction for limit-cycle dynamics

    Get PDF
    Recent years have witnessed increasing interest to phase-amplitude reduction of limit-cycle dynamics. Adding an amplitude coordinate to the phase coordinate allows to take into account the dynamics transversal to the limit cycle and thereby overcomes the main limitations of classic phase reduction (strong convergence to the limit cycle and weak inputs). While previous studies mostly focus on local quantities such as infinitesimal responses, a major and limiting challenge of phase-amplitude reduction is to compute amplitude coordinates globally, in the basin of attraction of the limit cycle. In this paper, we propose a method to compute the full set of phase-amplitude coordinates in the large. Our method is based on the so-called Koopman (composition) operator and aims at computing the eigenfunctions of the operator through Laplace averages (in combination with the harmonic balance method). This yields a forward integration method that is not limited to two-dimensional systems. We illustrate the method by computing the so-called isostables of limit cycles in two, three, and four-dimensional state spaces, as well as their responses to strong external inputs.Comment: 26 page

    Applied Koopman Operator Theory for Power Systems Technology

    Get PDF
    Koopman operator is a composition operator defined for a dynamical system described by nonlinear differential or difference equation. Although the original system is nonlinear and evolves on a finite-dimensional state space, the Koopman operator itself is linear but infinite-dimensional (evolves on a function space). This linear operator captures the full information of the dynamics described by the original nonlinear system. In particular, spectral properties of the Koopman operator play a crucial role in analyzing the original system. In the first part of this paper, we review the so-called Koopman operator theory for nonlinear dynamical systems, with emphasis on modal decomposition and computation that are direct to wide applications. Then, in the second part, we present a series of applications of the Koopman operator theory to power systems technology. The applications are established as data-centric methods, namely, how to use massive quantities of data obtained numerically and experimentally, through spectral analysis of the Koopman operator: coherency identification of swings in coupled synchronous generators, precursor diagnostic of instabilities in the coupled swing dynamics, and stability assessment of power systems without any use of mathematical models. Future problems of this research direction are identified in the last concluding part of this paper.Comment: 31 pages, 11 figure
    corecore