237 research outputs found

    A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected

    Get PDF
    The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae (Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance

    Comparison of the Sentinel-3A and B SLSTR Tandem Phase Data using metrological principles

    Get PDF
    The Sentinel 3 mission is part of the Copernicus programme space segment and has the objective of making global operational observations of ocean and land parameters with its four onboard sensors. Two Sentinel 3 satellites are currently on orbit, providing near-daily global coverage. Sentinel 3A was launched on 16 February 2016 and Sentinel 3B on 25 April 2018. For the early part of its operation, Sentinel 3B flew in tandem with Sentinel 3A, flying 30 seconds ahead of its twin mission. This provided a unique opportunity to compare the instruments on the two satellites, and to test the per pixel uncertainty values in a metrologically-robust manner. In this work we consider the tandem-phase data from the infrared channels of one of the onboard instruments: the Sea and Land Surface Temperature Radiometer, SLSTR. A direct comparison was made of both the Level 1 radiance values and the Level 2 sea surface temperature values derived from those radiances. At Level 1 the distribution of differences between the sensor values were compared to the declared uncertainties for data gridded on to a regular latitude-longitude grid with propagated pixel uncertainties. The results showed good overall radiometric agreement between the two sensors, with mean differences of ∟0.06 K, although there was a scene-temperature dependent difference for the oblique view that was consistent with what was expected from a stray light effect observed pre-flight. We propose a means to correct for this effect based on the tandem data. Level 1 uncertainties were found to be representative of the variance of the data, expect in those channels affected by the stray light effect. The sea surface temperature results show a very small difference between the sensors that could be in part due to the fact that the Sentinel-3A retrieval coefficients were also applied to the Sentinel-3B retrieval because the Sentinel-3B coefficients are not currently available. This will lead to small errors between the S3A and S3B retrievals. The comparison also suggests that the retrieval uncertainties may need updating for two of the retrieval processes, that there are extra components of uncertainty related the quality level and the probability of cloud that should be included. Finally, a study of the quality flags assigned to sea surface temperature pixel values provided valuable insight into the origin of those quality levels and highlighted possible uncertainties in the defined quality level

    A novel framework to harmonise satellite data series for climate applications

    Get PDF
    Fundamental and thematic climate data records derived from satellite observations provide unique information for climate monitoring and research. Since any satellite operates over a limited period of time only, creating a climate data record requires the combination of space-borne measurements from a series of several (often similar) satellite sensors. A simple combination of calibrated measurements from several sensors, however, can produce an inconsistent climate data record. This is particularly true of older, historic sensors whose behavior in space was often different from their behavior during pre-launch calibration in the laboratory. More scientific value can be derived from considering the series of historical and present satellites as a whole. Here we consider harmonisation as a process that obtains new calibration coefficients for revised sensor calibration models by comparing calibrated measurements over appropriate satellite-to-satellite match-ups, such as simultaneous nadir overpasses. When we perform a comparison of two sensors, however, we must consider that those sensors are not observing exactly the same Earth radiance. This is in part due to differences in exact location and time tolerated by the match-up process itself, but also due to differences in the spectral response functions of the two instruments, even when nominally observing the same spectral band. To derive a harmonised data set we do not aim to correct for spectral response function differences, but to reconcile the calibration of different sensors given their estimated spectral response function differences. Here we present the concept of a framework that establishes calibration coefficients and their uncertainty and error covariance for an arbitrary number of sensors in a metrologically-rigorous manner. We describe harmonisation and its mathematical formulation as an inverse problem. Solving this problem is challenging when some hundreds of millions of match-ups are involved and the errors of fundamental sensor measurements are correlated. We solve the harmonisation problem as marginalised errors in variables regression. The algorithm involves computation of first and second order partial derivatives, for which the corresponding computer source code is generated by Automatic Differentiation. Finally we present re-calibrated AVHRR radiances from a series of 10 sensors. It is shown that the new time series have much less match-up differences while being consistent with uncertainty statistics

    International Public Health Research Involving Interpreters: a Case Study from Bangladesh

    Get PDF
    Background: Cross-cultural and international research are important components of public health research, but the challenges of language barriers and working with interpreters are often overlooked, particularly in the case of qualitative research. Methods: A case-study approach was used to explore experiences of working with an interpreter in Bangladesh as part of a research project investigating women's experiences of emergency obstetric care. The case study: Data from the researcher's field notes provided evidence of experiences in working with an interpreter and show how the model of interviewing was adapted over time to give a more active role to the interpreter. The advantages of a more active role were increased rapport and "flow" in interviews. The disadvantages included reduced control from the researcher's perspective. Some tensions between the researcher and interpreter remained hard to overcome, irrespective of the model used. Independent transcription and translation of the interviews also raised questions around accuracy in translation. Conclusion: The issues examined in this case study have broader implications for public health research. Further work is needed in three areas: 1) developing effective relationships with interpreters; 2) the impact of the interpreter on the research process; and 3) the accuracy of the translation and level of analysis needed in any specific public health research. Finally, this paper highlights the importance to authors of reflecting on the potential impact of translation and interpretation on the research process when disseminating their research

    Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis

    Get PDF
    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics

    Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild.

    Get PDF
    Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound-producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome-wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking
    • …
    corecore