131 research outputs found

    The Effects of Resource Bundling on Third-party Logistics Providers’ Performance

    Get PDF
    This research develops and tests a model of the effects of resources bundling on third-party logistics (3PL) providers’ performance. Based on data from a survey of Malaysian 3PLs, basic and advanced technology and equipment resources, knowledge and relational resources, and demand management interfaces are identified. The bundling of advanced technology, knowledge resources, and demand management interface capability are found to enhance 3PLs’ customer service innovation. Similar resource bundling (excluding advanced technology) is required to achieve cost leadership. The effects of other resources on performance are mediated mainly by the demand management interface capability and knowledge resources. This is a novel attempt to justify the interaction and mediation effects of resources and capabilities on performance. The research highlights the needs for 3PL managers to focus on developing and bundling their demand management interface capability and knowledge resources in order to achieve cost leadership, and further combine advanced technology into such bundling of resources and capabilities to achieve innovation in customer service. It advances the application of resource-based view (RBV) theory in logistics research by identifying resources that play supporting roles and examining the capabilities for enhancing 3PLs’ competitive performance

    A Study of Success Rate of Miniscrew Implants as Temporary Anchorage Devices in Singapore

    Get PDF
    Objective. To find out the success rate of miniscrew implants in the National Dental Centre of Singapore (NDCS) and the impact of patient-related, location-related, and miniscrew implant-related factors. Materials and Methods. Two hundred and eighty-five orthodontic miniscrew implants were examined from NDCS patient records. Eleven variables were analysed to see if there is any association with success. Outcome was measured twice, immediately after surgery prior to orthodontic loading (T1) and 12 months after surgery (T2). The outcome at T2 was assessed 12 months after the miniscrew’s insertion date or after its use as a temporary anchorage device has ceased. Results. Overall success rate was 94.7% at T1 and 83.3% at T2. Multivariate analysis revealed only the length of miniscrew implant to be significantly associated with success at both T1 (P=0.002) and T2 (P=0.030). Miniscrew implants with lengths of 10–12 mm had the highest success rate (98.0%) compared to other lengths, and this is statistically significant (P=0.035). At T2, lengths of 10–12 mm had significantly (P=0.013) higher success rates (93.5%) compared to 6-7 mm (76.7%) and 8 mm (82.1%) miniscrew implants. Conclusion. Multivariate statistical analyses of 11 variables demonstrate that length of miniscrew implant is significant in determining success

    A Study of Success Rate of Miniscrew Implants as Temporary Anchorage Devices in Singapore

    Get PDF
    Objective. To find out the success rate of miniscrew implants in the National Dental Centre of Singapore (NDCS) and the impact of patient-related, location-related, and miniscrew implant-related factors. Materials and Methods. Two hundred and eighty-five orthodontic miniscrew implants were examined from NDCS patient records. Eleven variables were analysed to see if there is any association with success. Outcome was measured twice, immediately after surgery prior to orthodontic loading (T1) and 12 months after surgery (T2). The outcome at T2 was assessed 12 months after the miniscrew's insertion date or after its use as a temporary anchorage device has ceased. Results. Overall success rate was 94.7% at T1 and 83.3% at T2. Multivariate analysis revealed only the length of miniscrew implant to be significantly associated with success at both T1 ( = 0.002) and T2 ( = 0.030). Miniscrew implants with lengths of 10-12 mm had the highest success rate (98.0%) compared to other lengths, and this is statistically significant ( = 0.035). At T2, lengths of 10-12 mm had significantly ( = 0.013) higher success rates (93.5%) compared to 6-7 mm (76.7%) and 8 mm (82.1%) miniscrew implants. Conclusion. Multivariate statistical analyses of 11 variables demonstrate that length of miniscrew implant is significant in determining success

    Does an educational video for aneuploidy screening improve informed choice among pregnant women? A randomised controlled trial

    Get PDF
    BACKGROUND: Poor knowledge and the lack of deliberation have been cited as reasons for women making uninformed choices about aneuploidy screening. Adequate pre-test counselling is of particular importance where non-invasive prenatal screening (NIPS) is being increasingly offered as a primary screening test. DESIGN: Women attending the antenatal clinic with a singleton pregnancy below 14 weeks were randomised to receive routine counselling or the intervention-a 16-min educational video on aneuploidy screening before their consult. The primary outcome, rate of informed choice, was assessed using an adapted multidimensional measure of informed choice questionnaire, where informed choice was defined as good knowledge and value-consistent behaviour. Secondary outcomes included informed choice with deliberation, decisional conflict and anxiety. RESULTS: Two hundred and eighty-six women were recruited. 69.8% of women in the intervention group made an informed choice compared with 53.6% in the control group (Risk Ratio [RR] 1.30, p = 0.014). A significantly higher number of women in the intervention group had good knowledge compared to controls (81% vs. 60.9%; RR 1.33, p = 0.001). Decisional conflict did not differ between groups, but women in the intervention group had higher anxiety scores (p < 0.001). CONCLUSION: The study intervention was effective in helping women make informed choice. Qualitative studies to determine the reason for increased anxiety are needed. TRIAL REGISTRATION: Trial registry: ClinicalTrials.gov; Identifier: NCT05492981

    Are C-Reactive Protein Associated Genetic Variants Associated with Serum Levels and Retinal Markers of Microvascular Pathology in Asian Populations from Singapore?

    Get PDF
    Introduction:C-reactive protein (CRP) levels are associated with cardiovascular disease and systemic inflammation. We assessed whether CRP-associated loci were associated with serum CRP and retinal markers of microvascular disease, in Asian populations.Methods:Genome-wide association analysis (GWAS) for serum CRP was performed in East-Asian Chinese (N = 2,434) and Malays (N = 2,542) and South-Asian Indians (N = 2,538) from Singapore. Leveraging on GWAS data, we assessed, in silico, association levels among the Singaporean datasets for 22 recently identified CRP-associated loci. At loci where directional inconsistencies were observed, quantification of inter-ethnic linkage disequilibrium (LD) difference was determined. Next, we assessed association for a variant at CRP and retinal vessel traits [central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE)] in a total of 24,132 subjects of East-Asian, South-Asian and European ancestry.Results:Serum CRP was associated with SNPs in/near APOE, CRP, HNF1A and LEPR (p-values ≤4.7×10-8) after meta-analysis of Singaporean populations. Using a candidate-SNP approach, we further replicated SNPs at 4 additional loci that had been recently identified to be associated with serum CRP (IL6R, GCKR, IL6 and IL1F10) (p-values ≤0.009), in the Singaporean datasets. SNPs from these 8 loci explained 4.05% of variance in serum CRP. Two SNPs (rs2847281 and rs6901250) were detected to be significant (p-value ≤0.036) but with opposite effect directions in the Singaporean populations as compared to original European studies. At these loci we did not detect significant inter-population LD differences. We further did not observe a significant association between CRP variant and CRVE or CRAE levels after meta-analysis of all Singaporean and European datasets (p-value >0.058).Conclusions:Common variants associated with serum CRP, first detected in primarily European studies, are also associated with CRP levels in East-Asian and South-Asian populations. We did not find a causal link between CRP and retinal measures of microvascular disease

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
    corecore