127 research outputs found

    New rubber qualification for the igniter adapter

    Get PDF
    Kirkhill Rubber Company (KRC) has informed Thiokol Corporation that two raw materials used in the asbestos and silica filled acrylonitrile butadience rubber (NBR) formulation per STW 2621 are no longer available from their vendors. Agerite White (Di-beta-naphthyl-paraphenylene diamine), manufactured by B. F. Goodrich, is an antioxidant used in NBR. This raw material makes up roughly 1-2 percent of the finished product. KRC proposed that this raw material be replaced by Agerite Stalite S (mixture of octylated diphenylamines) distributed by R. T. Vanderbilt Co. Protox-166 zinc oxide, manufactured by Zinc Corporation of America, is an activator currently used in NBR. This material also makes up about 1-2 percent of the finished material. Protox-166 is an American process grade zinc oxide. It is proposed by KRC to replace Protox-166 with Kadox-930C, a French process grade zinc oxide. American process grades have an ASTM minimum purity of 99.0 percent; the French process grades have a minimum purity of 99.5 percent. Previous testing per WTP-0270 has demonstrated that the mechanical and thermal properties of the rubber with the new ingredients are comparable to the 'old' rubber. The test results are reported in TWR-61790. One igniter adapter, Part no. 7U77562-02 serial no. 2 was insulated per ETP-1206 using the new rubber formulation and a modified lay up and cure method to demonstrate that there is no impact on this process. The results of this demonstration are reported

    Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers

    Full text link
    Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or "shock-like", boundary layers of the isentropic compressible Navier-Stokes equations with gamma-law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our results indicate stability for gamma in the interval [1, 3] for all compressive boundary-layers, independent of amplitude, save for inflow layers in the characteristic limit (not treated). Expansive inflow boundary-layers have been shown to be stable for all amplitudes by Matsumura and Nishihara using energy estimates. Besides the parameter of amplitude appearing in the shock case, the boundary-layer case features an additional parameter measuring displacement of the background profile, which greatly complicates the resulting case structure. Moreover, inflow boundary layers turn out to have quite delicate stability in both large-displacement and large-amplitude limits, necessitating the additional use of a mod-two stability index studied earlier by Serre and Zumbrun in order to decide stability

    Metastability of solitary roll wave solutions of the St. Venant equations with viscosity

    Full text link
    We study by a combination of numerical and analytical Evans function techniques the stability of solitary wave solutions of the St. Venant equations for viscous shallow-water flow down an incline, and related models. Our main result is to exhibit examples of metastable solitary waves for the St. Venant equations, with stable point spectrum indicating coherence of the wave profile but unstable essential spectrum indicating oscillatory convective instabilities shed in its wake. We propose a mechanism based on ``dynamic spectrum'' of the wave profile, by which a wave train of solitary pulses can stabilize each other by de-amplification of convective instabilities as they pass through successive waves. We present numerical time evolution studies supporting these conclusions, which bear also on the possibility of stable periodic solutions close to the homoclinic. For the closely related viscous Jin-Xin model, by contrast, for which the essential spectrum is stable, we show using the stability index of Gardner--Zumbrun that solitary wave pulses are always exponentially unstable, possessing point spectra with positive real part.Comment: 42 pages, 9 figure

    Gaussians versus back-to-back exponentials: a numerical study

    Get PDF
    The underlying magnetic field distribution in many samples studied by the mu R technique is asymmetric. Despite this, quite often fit functions assuming symmetric (Gaussian) distributions are used. Here, a back-to-back exponential function, which can be made asymmetric with fit parameters, is studied numerically alongside a Gaussian function to see how well each fits symmetric and asymmetric simulated data. Both fit symmetric data well, but the back-to-back exponential is found to be superior for fitting asymmetric data

    Existence and stability of viscoelastic shock profiles

    Full text link
    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic--parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and or nonclassical type shock profiles.Comment: 43 pages, 12 figure

    In Deadly Time: The Lasting On of Waste in Mayhew’s London

    Get PDF
    This paper examines the temporal dimension of waste in Henry Mayhew’s London Labour and the London Poor as an instance of how modernity has produced a largely hidden domain of the non-identical and indeterminate. Through a consideration of the phenomena of uselessness, decay and poverty I argue that the temporal dimension of waste is constituted as a corrosive or malign ‘Deadly Time.’ In placing such emphasis on time directed towards death, I aim to show that Mayhew’s undisciplined researches can be seen as a valuable source for understanding why modern thinking struggles to come to terms with waste

    Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation

    Full text link
    In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large scale perturbations of a periodic wave train, with numerical time evolution studies, demonstrating their effectiveness at a practical level. For the reader's convenience, we include in an appendix the corresponding treatment of the Swift-Hohenberg equation, a nonconservative counterpart of the generalized Kuramoto-Sivashinsky equation for which the nonlinear stability analysis is considerably simpler, together with numerical Evans function analyses extending spectral stability analyses of Mielke and Schneider.Comment: 78 pages, 11 figure

    Identification of financial statement fraud in Greece by using computational intelligence techniques

    Get PDF
    The consequences of financial fraud are an issue with far-reaching for investors, lenders, regulators, corporate sectors and consumers. The range of development of new technologies such as cloud and mobile computing in recent years has compounded the problem. Manual detection which is a traditional method is not only inaccurate, expensive and time-consuming but also they are impractical for the management of big data. Auditors, financial institutions and regulators have tried to automated processes using statistical and computational methods. This paper presents comprehensive research in financial statement fraud detection by using machine learning techniques with a particular focus on computational intelligence (CI) techniques. We have collected a sample of 2469 observations since 2002 to 2015. Research gap was identified as none of the existing researchers address the association between financial statement fraud and CI-based detection algorithms and their performance, as reported in the literature. Also, the innovation of this research is that the selection of data sample is aimed to create models which will be capable of detecting the falsification in financial statements

    Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    Get PDF
    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications

    Primary Transgenic Bovine Cells and Their Rejuvenated Cloned Equivalents Show Transgene-Specific Epigenetic Differences

    Get PDF
    Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences
    • …
    corecore