Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the
shock wave case, we study stability of compressive, or "shock-like", boundary
layers of the isentropic compressible Navier-Stokes equations with gamma-law
pressure by a combination of asymptotic ODE estimates and numerical Evans
function computations. Our results indicate stability for gamma in the interval
[1, 3] for all compressive boundary-layers, independent of amplitude, save for
inflow layers in the characteristic limit (not treated). Expansive inflow
boundary-layers have been shown to be stable for all amplitudes by Matsumura
and Nishihara using energy estimates. Besides the parameter of amplitude
appearing in the shock case, the boundary-layer case features an additional
parameter measuring displacement of the background profile, which greatly
complicates the resulting case structure. Moreover, inflow boundary layers turn
out to have quite delicate stability in both large-displacement and
large-amplitude limits, necessitating the additional use of a mod-two stability
index studied earlier by Serre and Zumbrun in order to decide stability