360 research outputs found

    Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson–Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses (MP = 1.30 0.06 M, MS = 1.14 0.06 M). The radius of the primary can be determined to be RP = 5.6 0.1 R and that of the secondary to be RS = 1.6 0.2 R. The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.We thank Robert Wilson (University of Florida) for providing a custom version of his code to compute images of spotted stellar surfaces and for his help with using it. This work is based upon observations obtained with the Georgia State University (GSU) Center for High Angular Resolution Astronomy (CHARA) array at Mount Wilson Observatory. The CHARA array is supported by the National Science Foundation under grant numbers AST-1211929 and AST-1411654. Institutional support has been provided by the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. The MIRC instrument at the CHARA array was funded by the University of Michigan. F.B., R.R., and J.D.M. acknowledge support from NSF-AST 1210972 and 1108963. G.T. acknowledges partial support from NSF grant AST-1509375. S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (grant agreement no. 639889). This work is also based on observations made with the Nordic Optical Telescope (NOT), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research has made use of the SIMBAD database, operated at the CDS, Strasbourg, France. This research has made use of the Jean-Marie Mariotti Center SearchCal service13 codeveloped by FIZEAU and LAOG/IPAG and of the CDS astronomical databases SIMBAD and VIZIER.14 This research has made use of the Washington Double Star Catalog, maintained at the U.S. Naval Observatory. We thank Nicholas Elias II for discussions. We thank Dimitri Pourbaix for maintaining and providing access to the SB9 database of RV measurements of spectroscopic binaries

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Accurate masses and radii of normal stars: modern results and applications

    Get PDF
    This paper presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and alpha Centauri) that satisfy our criterion that the mass and radius of both stars be known to 3% or better. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. We discuss the use of this information for testing models of stellar evolution. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff), log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to better than 3%, but without fundamental radius determinations (except alpha Aur). We discuss the prospects for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and Astrophysics Review. Ascii versions of the tables will appear in the online version of the articl

    Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex

    Get PDF
    BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test. RESULTS: There were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance. CONCLUSION: These results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement

    Semantic Knowledge Influences Prewired Hedonic Responses to Odors

    Get PDF
    Background Odor hedonic perception relies on decoding the physicochemical properties of odorant molecules and can be influenced in humans by semantic knowledge. The effect of semantic knowledge on such prewired hedonic processing over the life span has remained unclear. Methodology/Principal Findings The present study measured hedonic response to odors in different age groups (children, teenagers, young adults, and seniors) and found that children and seniors, two age groups characterized by either low level of (children) or weak access to (seniors) odor semantic knowledge, processed odor hedonics more on the basis of their physicochemical properties. In contrast, in teenagers and young adults, who show better levels of semantic odor representation, the role of physicochemical properties was less marked. Conclusions/Significance These findings demonstrate for the first time that the biological determinants that make an odor pleasant or unpleasant are more powerful at either end of the life span

    Effects of cisplatin on olfactory function in cancer patients

    Get PDF
    A prospective analysis of olfaction was performed in 21 patients receiving cisplatin. A reduction in olfactory function was noted in only one patient. Hearing impairment was documented in nine patients, none of whom had impaired sense of smell. We conclude that cisplatin has no major deleterious effect on olfactory function at doses which cause hearing impairment

    Position Paper on Olfactory Dysfunction

    Get PDF
    Background: Olfactory dysfunction is an increasingly recognised condition, associated with reduced quality of life and major health outcomes such as neurodegeneration and death. However, translational research in this field is limited by heterogeneity in methodological approach, including definitions of impairment, improvement and appropriate assessment techniques. Accordingly, effective treatments are limited. In an effort to encourage high quality and comparable work in this field, among others, we propose the following ideas and recommendations. Whilst full recommendations are outlined in the main document, key points include: -Patients with suspected olfactory loss should undergo a full examination of the head and neck, including rigid nasal endoscopy. -Subjective olfactory assessment should not be undertaken in isolation, given its poor reliability. -Psychophysical assessment tools used in clinical and research settings should include reliable and validated tests of odour threshold, and/or one of odour identification or discrimination. -Comprehensive chemosensory assessment should include gustatory screening. -Smell training can be helpful in patients with olfactory loss of several aetiologies. Conclusions: We hope the current manuscript will encourage clinicians and researchers to adopt a common language, and in so doing, increase the methodological quality, consistency and generalisability of work in this field

    Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers

    Get PDF
    Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials

    The importance of perceptual experience in the esthetic appreciation of the body.

    Get PDF
    Several studies suggest that sociocultural models conveying extreme thinness as the widespread ideal of beauty exert an important influence on the perceptual and emotional representation of body image. The psychological mechanisms underlying such environmental influences, however, are unclear. Here, we utilized a perceptual adaptation paradigm to investigate how perceptual experience modulates body esthetic appreciation. We found that the liking judgments of round bodies increased or decreased after brief exposure to round or thin bodies, respectively. No change occurred in the liking judgments of thin bodies. The results suggest that perceptual experience may shape our esthetic appreciation to favor more familiar round body figures. Importantly, individuals with more deficits in interoceptive awareness were less prone to increase their liking ratings of round bodies after exposure, suggesting a specific risk factor for the susceptibility to the influence of the extreme thin vs. round body ideals of beauty portrayed by the media

    Nasal Chemosensory-Stimulation Evoked Activity Patterns in the Rat Trigeminal Ganglion Visualized by In Vivo Voltage-Sensitive Dye Imaging

    Get PDF
    Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory information within the trigeminal ganglion imaged at high temporal resolution
    corecore