163 research outputs found

    Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the hot Jupiter WASP-4b

    Full text link
    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440-940 nm at R ~ 400-1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to a large scale height (370 km). We derive the transmission spectrum of WASP-4b using 4 transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain size of ~1 um. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time- dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.Comment: 23 pages, 12 figures, accepted for publication in AJ, 2017 July

    Transmission Spectroscopy: First Glimpses of Far-Off Worlds

    Get PDF
    Since the first discovery of a transiting planet in 2000, transmission spectroscopy has proved essential for characterising the rapidly increasing number of known extrasolar planets. When a planet is in a favourable alignment, it periodically passes (transits) in front of its host star, during which time it blocks a fraction of the stellar light. During a transit, the starlight passes through the planetary atmosphere, causing the signatures of atoms or molecules present in that atmosphere to imprint themselves on the stellar spectrum, allowing direct observation of a planet's atmospheric composition. At the start of this thesis, only two planets (HD 189733b and HD 209458b) had been studied in any detail, mainly from space. The two planets showed surprisingly different qualities for two objects with only a small temperature difference between them, and motivated both wider and more detailed studies of the exoplanet population. Since the start of my PhD, the amount of exoplanet knowledge has grown rapidly, with observations from the ground becoming important, and with studies branching out towards new planets. There are several contributions made by this thesis to the field. Chapter 3 details the detection of the resolved sodium D doublet in the atmosphere of HD 189733b, a planet with a featureless broad-band transmission spectrum dominated by Rayleigh scattering. The results confirmed the presence of sodium absorption as well as resolving the feature for the first time, and placing constraints on relative abundances. Furthermore, in Chapter 4, I outline a method based on earlier work which allows observers to retrieve atmospheric temperature information from resolved spectral features. This method is applied to the observations of HD 189733b, showing that the planet has a hot thermosphere similar to HD 209458b. The models are then also used in later chapters. I then present the first results from a ground-based optical long-slit spectroscopic survey in Chapter 5, and the first results from a space-based optical-near-IR spectroscopic survey in Chapter 6. From the ground, I detect absorption from sodium in the atmosphere of XO-2b, making this the first planet with sodium and potassium detected in its atmosphere. I also find that the Na I D feature lacks broad line wings, suggesting haze or cloud cover. From space, I observed the transmission spectrum of WASP-19b, finding solar abundance water features and a likely lack of predicted TiO features. WASP-19b is the first planet to have confirmed water features at solar-abundance level. In Chapter 7 I conclude and discuss future work, including a project aimed at understanding why WASP-19b lacks TiO features, and projects which move beyond the hot Jupiter class.STF

    The Call For Sonic Thinking: Gilles Deleuze and the Object of Sound Studies

    Get PDF
    This thesis proposes to define and to dramatize a relation between Deleuze studies and sound studies in terms of a conception of theoretical work as an experimental practice that bears not upon objects but upon Ideas—or rather, that reconfigures the sense of object in relation to a renewed conception of the Idea. This relation between two discourses will proceed through an engagement between the work of Gilles Delueze and that of John Cage, constituted as an “interference between practices”, with the intent of furnishing, to sound studies, a meta-theoretical reflection on the problem that sound poses to thinking, and on the conditions under which theory can respond to such a problem without, thereby, reducing it to something all-too-recognisable

    Temperature-Pressure Profile of the hot Jupiter HD 189733b from HST Sodium Observations: Detection of Upper Atmospheric Heating

    Full text link
    We present transmission spectra of the hot Jupiter HD 189733b taken with the Space Telescope Imaging Spectrograph aboard HST. The spectra cover the wavelength range 5808-6380 Ang with a resolving power of R=5000. We detect absorption from the NaI doublet within the exoplanet's atmosphere at the 9 sigma confidence level within a 5 Ang band (absorption depth 0.09 +/- 0.01%) and use the data to measure the doublet's spectral absorption profile. We detect only the narrow cores of the doublet. The narrowness of the feature could be due to an obscuring high-altitude haze of an unknown composition or a significantly sub-solar NaI abundance hiding the line wings beneath a H2 Rayleigh signature. We compare the spectral absorption profile over 5.5 scale heights with model spectral absorption profiles and constrain the temperature at different atmospheric regions, allowing us to construct a vertical temperature profile. We identify two temperature regimes; a 1280 +/- 240 K region derived from the NaI doublet line wings corresponding to altitudes below ~ 500 km, and a 2800 +/- 400 K region derived from the NaI doublet line cores corresponding to altitudes from ~ 500-4000 km. The zero altitude is defined by the white-light radius of Rp/Rstar=0.15628 +/- 0.00009. The temperature rises with altitude, which is likely evidence of a thermosphere. The absolute pressure scale depends on the species responsible for the Rayleigh signature and its abundance. We discuss a plausible scenario for this species, a high-altitude silicate haze, and the atmospheric temperature-pressure profile that results. In this case, the high altitude temperature rise for HD 189733b occurs at pressures of 10^-5 to 10^-8 bar

    Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b

    Full text link
    Time-series spectrophotometric studies of exoplanets during transit using ground-based facilities are a promising approach to characterize their atmospheric compositions. We aim to investigate the transit spectrum of the hot Jupiter HAT-P-1b. We compare our results to those obtained at similar wavelengths by previous space-based observations. We observed two transits of HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the Gemini North telescope using two instrument modes covering the 320 - 800 nm and 520 - 950 nm wavelength ranges. We used time-series spectrophotometry to construct transit light curves in individual wavelength bins and measure the transit depths in each bin. We accounted for systematic effects. We addressed potential photometric variability due to magnetic spots in the planet's host star with long-term photometric monitoring. We find that the resulting transit spectrum is consistent with previous Hubble Space Telescope (HST) observations. We compare our observations to transit spectroscopy models that marginally favor a clear atmosphere. However, the observations are also consistent with a flat spectrum, indicating high-altitude clouds. We do not detect the Na resonance absorption line (589 nm), and our observations do not have sufficient precision to study the resonance line of K at 770 nm. We show that even a single Gemini/GMOS transit can provide constraining power on the properties of the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies in the optical when the observing conditions and target and reference star combination are suitable. Our 520 - 950 nm observations reach a precision comparable to that of HST transit spectra in a similar wavelength range of the same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table

    Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]

    Full text link
    An error was detected in the code used for the analysis of the HD209458b sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C

    The dog-leg: an alternative to a cross-over design for pragmatic clinical trials in relatively stable populations

    Get PDF
    Background: A cross-over trial design is more powerful than a parallel groups design, but requires that treatment effects do not carry over from one period of the trial to the next. We focus here on interventions in chronic disease populations where the control is routine care: in such cases we cannot assume the intervention effect is easily washed out in crossing over from the experimental intervention back to the control. Methods: We introduce an alternative trial design for these situations, and investigate its performance. One group is assessed before and after the experimental intervention, whereas two other groups provide respective, independent treatment comparisons in each period. We call this a dog-leg design because of the pattern of assessments in the three groups. The dog-leg design is reminiscent of a stepped wedge design, but with a reduced schedule of assessments and with the notable difference that not all groups receive the intervention. Results: If the correlation between baseline and follow-up is <0.72, the dog-leg design is more efficient than a parallel groups design with a baseline assessment. The dog-leg design also requires fewer assessments in total than a parallel groups design where participants are only assessed once, at follow-up. Conclusions: The dog-leg design is simple, and has some attractive properties. Though there is a risk of differential attrition in the three arms, the design’s good performance relative to alternatives makes it a useful addition to the methodologist’s toolkit

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Temperature-pressure profile of the hot Jupiter HD 189733b from HST sodium observations: Detection of upper atmospheric heating

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present transmission spectra of the hot Jupiter HD 189733b taken with the Space Telescope Imaging Spectrograph (STIS) aboard Hubble Space Telescope (HST). The spectra cover the wavelength range 5808–6380 Å with a resolving power of R= 5000. We detect absorption from the Na i doublet within the exoplanet’s atmosphere at the 9σ confidence level within a 5 Å band (absorption depth 0.09 ± 0.01 per cent) and use the data to measure the doublet’s spectral absorption profile. We detect only the narrow cores of the doublet. The narrowness of the feature could be due to an obscuring high-altitude haze of an unknown composition or a significantly sub-solar Na i abundance hiding the line wings beneath an H2 Rayleigh signature. These observations are consistent with previous broad-band spectroscopy from Advanced Camera for Surveys (ACS) and STIS, where a featureless spectrum was seen. We also investigate the effects of starspots on the Na i line profile, finding that their impact is minimal and within errors in the sodium feature. We compare the spectral absorption profile over 5.5 scale heights with model spectral absorption profiles and constrain the temperature at different atmospheric regions, allowing us to construct a vertical temperature profile. We identify two temperature regimes: a 1280 ± 240 K region derived from the Na i doublet line wings corresponding to altitudes below ∌500 km, and a 2800 ± 400 K region derived from the Na i doublet line cores corresponding to altitudes from ∌500 to 4000 km. The zero altitude is defined by the white-light radius of RP/R★= 0.15628 ± 0.00009. The temperature rises with altitude, which is likely evidence of a thermosphere. The absolute pressure scale depends on the species responsible for the Rayleigh signature and its abundance. We discuss a plausible scenario for this species, a high-altitude silicate haze and the atmospheric temperature–pressure profile that results. In this case, the high-altitude temperature rise for HD 189733b occurs at pressures of 10−5 to 10−8 bar.Science and Technology Facilities Council (STFC)NAS
    • 

    corecore