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Key messages 
 

We propose a novel clinical trial design called a dog-leg design which, like a cross-

over design, runs over two consecutive intervention periods. 

 

The dog-leg design does not require the effect of the experimental intervention in the 

first period to have disappeared in the second. 

 

In some realistic situations the dog-leg design is more efficient than a parallel groups 

design with a baseline assessment. 

 

The dog-leg design also requires fewer assessments in total than a parallel groups 

design where participants are only assessed once, at follow-up. 
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Summary  
 

Background 

 

A cross-over trial design is more powerful than a parallel groups design, but requires 

that treatment effects do not carry over from one period of the trial to the next. We 

focus here on interventions in chronic disease populations where the control is routine 

care: in such cases we cannot assume the intervention effect is easily washed out in 

crossing over from the experimental intervention back to the control. 

 

Methods 

 

We introduce an alternative trial design for these situations, and investigate its 

performance. One group is assessed before and after the experimental intervention, 

while two other groups provide respective, independent treatment comparisons in 

each period. We call this a dog-leg design because of the pattern of assessments in the 

three groups. The dog-leg design is reminiscent of a stepped-wedge design, but with a 

reduced schedule of assessments, and with the notable difference that not all groups 

receive the intervention. 

 

Results 

 

If the correlation between baseline and follow-up is <0.72, the dog-leg design is more 

efficient than a parallel groups design with a baseline assessment. The dog-leg design 

also requires fewer assessments in total than a parallel groups design where 

participants are only assessed once, at follow-up. 

 

Conclusions 

 

The dog-leg design is simple, and has some attractive properties. Though there is a 

risk of differential attrition in the three arms, the design’s good performance relative 

to alternatives makes it a useful addition to the methodologist’s toolkit. 

 

Keywords: clinical trial design, cross-over trials, stepped wedge, dog-leg
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Introduction 
 

Cross-over trials – clinical trials in which participants act as their own controls and 

are randomised to the order in which they get the experimental and control treatments 

– are contraindicated when the effects of treatment could carry over from one period 

of the trial to the next.1 They can work well for pharmacokinetic trials,2 but are 

problematic for interventions whose effects are intended to be durable. 

 

In this article we focus on pragmatic trials in chronic disease populations, or other 

populations with relatively stable health, and where the comparator is routine care. 

We are interested in this case in how patients would improve with the introduction of 

the new intervention. While it would be tempting to run a trial where we simply 

assess the same group of participants pre- and post-intervention, the flaw in such a 

design is that patient outcomes could change naturally over time following 

recruitment into the trial, even in a relatively stable population. A comparison group 

is needed who are assessed at the same time following recruitment but who have not 

had the intervention. 

 

The simplest approach is to randomise participants into two groups – one receiving 

the experimental intervention, the other routine care – and assess both at the end of 

the intervention period. This is the standard, parallel groups design. Such a trial can 

be done with or without a baseline assessment of outcome. The degree of advantage 

in including a baseline assessment depends on the correlation between baseline and 

follow-up assessments: the greater the correlation, the greater the advantage.3 The 

most efficient way of analysing a parallel groups design with a baseline assessment is 

with an analysis of covariance (ANCOVA), though an analysis of change scores is 

also common.4 

 

A cross-over trial, which uses participants as their own controls, achieves more power 

than a parallel groups trial, but assumes that the effect of the first period of the trial 

has disappeared by the time that the measurement of the effect in the second period is 

taken. Other designs allow for the possibility of carry-over of treatment effects. 

Balaam’s design, which consists of four arms with one for every combination of 

intervention and control in the first and second periods, is optimal under a simplifying 

assumption that the carry-over effect of having had the experimental intervention in 

the first period is the same whether you have the experimental intervention or the 

control in the second period, and similarly for the carry-over effect of the control.5 

This simplifying assumption is, however, suspect for an intervention whose effect we 

think may largely be maintained once it has been introduced. 

 

In this article we present a design which makes no assumptions about the carry-over 

effect of the experimental intervention. We are interested in the difference in outcome 

between intervention and routine care in a population previously treated with routine 

care. We will assume this difference does not depend on the duration of previous 

routine care, or equivalently that there is no carry-over effect of routine care, though 

we will allow the possibility of an overall effect of time since randomization, that is a 

natural shift in outcomes over time in the population of interest. The asymmetry in 

our assumptions about carry-over of intervention and control may be reasonable when 

the control is routine care and the population is relatively stable, but may be harder to 

justify otherwise. 
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Methods 
 

Design 

 

Figure 1 illustrates the design. Figure 1(a) shows the timing of the intervention and 

assessments post-randomisation. Routine care is assumed to be given up to the point 

that any intervention is indicated. Figure 1(b) is a schema for the schedule of 

assessments, distinguishing between assessments conducted before and after the 

intervention 

 

Participants are randomised into three arms: in the central arm (group 2) participants 

act as their own controls, being assessed both before and after the experimental 

intervention. So that effects of treatment and time since randomisation can be 

disentangled, two additional arms provide a treatment comparison in each period of 

the trial: these are not repeated in the same individuals, but rather in independent 

groups in order to avoid having to assume the intervention effect can be washed out. 

We refer to this as a dog-leg design because of the pattern formed by assessments in 

the three groups (“dog-leg” in English refers to something that is bent or crooked like 

a dog’s hind leg). 

 

Like a cross-over trial, a dog-leg trial must be run over two consecutive periods of 

intervention and follow-up. The dog-leg design is reminiscent of a stepped wedge 

design (a form of pre-post design in which the introduction of the intervention is 

staggered over a number of groups and time intervals),6 but with a reduced schedule 

of assessments, and with the notable difference that not all of the groups receive the 

intervention. We assume from the symmetry of the design that it is optimal to assign 

equal proportions of participants to groups 1 and 3, but we do not make any prior 

assumption as to what this proportion should be. 

 

[Figure 1 about here] 

 

Statistical model 

 

Suppose there are N participants in total, with the same number n in each of groups 1 

and 3. We consider a random-effects model for a Normally-distributed outcome yijk 

for individual j in group i at time k, with baseline mean , effect of time since 

randomisation , treatment effect  , and variances between and within participants 

b
2 and w

2, respectively. 

 

Then 

 

 y1j1 =  +  + 1j + 1j1, j = 1, …, n; 

 y2j1 =  + 2j + 2j1, j = 1, …, N-2n; 

 y2j2 =  +  +  + 2j + 2j2, j = 1, …, N–2n; 

 y3j2 =  +  + 3j + 3j2, j = 1, …, n; 

 

where 
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ij  N(0,b
2), 

ijk  N(0,w
2), 

 

or in vector notation 

 

,eZy 




















 

 

where e is multivariate Normal with mean 0 and block-diagonal variance-covariance 

matrix V. 

 

The standard error of the treatment effect could be derived using the theory of 

generalised least squares estimators, whereby the variance-covariance matrix of the 

estimator   ˆ,ˆ,ˆ  is given by  11 )(  ZVZ , but for the model specified above the 

standard error can be derived without recourse to matrix inversion by directly 

determining the minimum variance unbiased estimator (see Appendix). By comparing 

this standard error with the standard error from an ANCOVA in a parallel groups 

design (more specifically by calculating the ratio of the variances)3 we determined the 

relative efficiency of the two designs – that is, the inverse ratio of sample sizes 

required for the two designs to achieve the same statistical power. We also used the 

standard error of the treatment effect to construct sample size tables for dog-leg trials. 

 

Correlation between baseline and follow-up – a systematic review 

 

The relative advantages of different trial designs depend on the correlation between 

assessments before and after intervention in the same individual. Sample size 

calculations for trials have tended to assume this correlation is moderate.3 To provide 

information for this article on typical correlations we systematically reviewed clinical 

trials published in the Lancet or New England Journal of Medicine between 01 

January 2012 and 31 March 2013. Details of methods and results are given in the 

online supplement. 

 

Results 
 

Relative efficiency 

 

The estimate of the treatment effect from a dog-leg design is simply 

 

,2/)(ˆ
32222111 yyyy   

 

where iky  is the mean outcome in group i in period k (see Appendix). The standard 

error of this estimate depends not only on the correlation between baseline and 

follow-up, but on the proportions of participants allocated to the three arms. If the 

proportion of participants allocated to each of groups 1 and 3 is p, and the correlation 

between assessments before and after the intervention in the same individual is r, then 

the standard error is 

 



8 

 

)21(2

))1(1(2

pNp

rp




, 

 

where  is the standard deviation of the outcome before or after intervention, and N is 

the total sample size. Note that using our earlier notation for the relevant variance 

components,  
2 = b

2 + w
2 and r = b

2 / (b
2 + w

2). 

 

The standard error of the treatment effect from an ANCOVA in a parallel groups 

design with total sample size N and 1:1 allocation ratio is3 

 

.
)1(4 22

N

r
 

 

Figure 2(a) shows the relative efficiency of the dog-leg design compared with a 

parallel groups design analysed with ANCOVA, plotted against p for various values 

of r. The best choice of p depends on r, but close-to-optimal performance can be 

achieved over a wide range of r-values by choosing p=1/3, that is by allocating 

participants to arms in the ratio 1:1:1. 

 

[Figure 2 about here] 

 

Figure 2(b) shows the relative efficiency plotted against r for allocation ratios 1:1:1 

(p=1/3), 1:2:1 (p=0·25) and 2:1:2 (p=0·4). This confirms p=1/3 as a sensible choice in 

general. As long as r<0·72 the dog-leg design with allocation ratio 1:1:1 is more 

efficient than a parallel groups design analysed with ANCOVA, and may be up to 

43% more efficient (i.e. a parallel groups design analysed with ANCOVA could need 

up to 43% more participants than a dog-leg design to achieve the same statistical 

power).  

 

Compared to a parallel groups design with no baseline assessment,3 the relative 

efficiency of a 1:1:1 dog-leg design is even better, being always at least 133%. Since 

participants in a dog-leg trial each get an average of 1·33 assessments, this means the 

total number of assessments required in a dog-leg design is smaller even than the 

number required for a parallel groups design where participants are assessed only 

once, at follow-up.  

 

Sample size 

 

Using the above expression for the standard error of the treatment effect, we 

constructed a table of the sample size per group needed to achieve 80% or 90% power 

at the 5% significance level with a dog-leg design, assuming a variety of effect sizes 

and correlations between baseline and follow-up, and with a 1:1:1 allocation ratio to 

the three arms (Table 1). Sample size tables for parallel groups trials with and without 

baseline assessments are widely available.7 

 

[Table 1 about here] 

 

For example, an investigator wants to conduct a trial of a new intervention for people 

with Parkinson’s disease, and would like 80% power to detect a difference of 6 scale 
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points on a quality of life measure with a standard deviation of 15 scale points (an 

effect size of 0·4). Suppose other work with this measure suggests that the correlation 

between quality of life before and after treatment in the same individual is 0·6. A 

parallel groups design with no baseline would require 200 participants in total (100 of 

whom would receive the intervention) and 200 assessments in total.7 A parallel 

groups design with baseline assessment would require 128 participants in total (64 of 

whom would receive the intervention) and 256 assessments in total.7 From Table 1, a 

dog-leg design requires just 108 participants in total (72 of whom receive the 

intervention) and just 144 assessments in total. 

 

Correlation between baseline and follow-up 

 

Of 250 clinical trials published in the Lancet and New England Journal of Medicine 

between 01 January 2012 and 31 March 2013, 36 met the criteria specified in our 

systematic review. We were able to calculate 30 correlations from 23 of these trials 

(see online supplement): these correlations had a median of 0·71, with interquartile 

range 0·59 to 0·80. 

 

Discussion 
 

Adding further assessments 

 

As with any design, the power of the dog-leg could potentially be increased by adding 

assessments. Not all such augmentations are helpful, however. A second assessment 

in group 1 (period 2) could not be used to estimate the treatment effect because we are 

assuming nothing about the carry-over effect of the experimental intervention. A 

baseline assessment (at the time of randomisation) in group 1 is also of little help by 

itself if no other group is assessed at randomisation for comparison, since we are 

assuming a possible effect of time since randomisation. 

 

The most obvious choice for an additional assessment is in group 3, period 1 

(Figure 3). Using the generalised least squares, matrix algebra approach described in 

the Methods, we determined the standard error of the treatment effect in this 

augmented dog-leg design to be  

 

,
)))1)(()(((

)1)((

321

2

3213232

2

32

2

ppprpppppppN

rpp




 

 

where p1, p2 and p3 are the proportions of participants allocated to groups 1, 2 and 3, 

respectively. If we assume directly from the symmetry in p2 and p3 that the optimal 

allocation has p2 = p3 = p, say, then the standard error becomes 

 

.
))1)(21(4(

)1(2
2

22

prppN

r




 

 

Figure 4 shows the relative efficiency of the augmented dog-leg design compared 

with a parallel groups design analysed with ANCOVA, for different p and r. Again a 

choice of 1:1:1 for the allocation ratio seems sensible for r>0·8, say (for larger r one 



10 

 

might as well use the ANCOVA design, which is essentially equivalent to p=0.5). 

Figure 5 shows the relative efficiency of the 1:1:1 augmented dog-leg design 

compared with the 1:1:1 dog-leg design. Interestingly, when r=0·5 there is no 

advantage to the augmented design. At other r-values there is some advantage, but for 

r<0·8 the relative efficiency never exceeds 125%, meaning that the total number of 

assessments needed for the dog-leg design is still less than the number needed for the 

augmented design. When assessments are expensive, invasive or painful, the number 

of assessments required may have at least as much practical and ethical importance as 

the number of participants. With invasive assessments, participants in group 3 in 

particular, who receive no active intervention, may question whether two assessments 

are really needed. 

 

[Figure 3 about here] 

[Figure 4 about here] 

[Figure 5 about here] 

 

Practicalities of running a dog-leg trial 

 

The dog-leg design is unconventional in having a different schedule of assessments in 

each randomised arm. Group 1 participants are not assessed in the second period of 

the trial, nor is the analysis affected by the treatment they receive in this period. The 

trial protocol should specify how participants in group 1 are to be treated in the 

second period; a choice that can be made according to ethical and scientific 

considerations. Group 3 participants, meanwhile, are not assessed until the second 

period, but this is straightforward to achieve: if the duration of each period is 3 

months, say, then a participant randomised into group 3 should have their first (and 

only) assessment scheduled at 6 months post-randomisation, just as if they were in the 

control arm of a parallel groups trial with 6-month follow-up. 

 

Data from a dog-leg trial could be analysed with standard statistical software that 

allows a mixed regression model with a random effect of participant and fixed effects 

of treatment and time since randomization. This would also enable adjustment for 

additional covariates if required. 

 

Dependence on the correlation 

 

A curious feature of the dog-leg design is that its efficiency relative to a parallel 

groups design analysed with ANCOVA first increases, and then decreases with 

increasing correlation between baseline and follow-up assessments. This is because 

for small r the ANCOVA is able to take relatively little advantage of the baseline 

assessment, while the dog-leg design is able to benefit from some participants being 

their own controls (a benefit which increases as the correlation increases). For larger r 

the ANCOVA is increasingly able to adjust for individual participant differences in 

the whole sample, out-performing the dog-leg which assesses most of its participants 

only once. 

 

Conclusions 

 

The dog-leg design requires fewer participants for the same power than a parallel 

groups design with a baseline assessment if the correlation between baseline and 
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follow-up is not too high. From our review we conclude that correlations below 0·7 

are not uncommon in studies of chronic diseases. The dog-leg design also requires 

even fewer assessments than a parallel groups design where participants are assessed 

only once, making it particularly attractive for minimising expensive or invasive 

assessments. In addition, the intervention is offered to the majority (2/3) of 

participants in a 1:1:1 dog-leg design, which may be an incentive to recruitment. 

 

On the negative side, a dog-leg trial, like a cross-over trial, must be run over two 

consecutive intervention periods, increasing the risk of attrition. Moreover there is a 

risk of differential attrition in the three arms, which differ in the timing and nature of 

contact with participants.  The dog-leg design can only be used if we are confident 

that making an assessment does not alter subsequent outcomes (some participants 

assessed in a given period have a previous assessment, and some do not). 

 

Dog-leg trials seem not to have been described previously, at least not explicitly. 

Methodological reviews of cross-over trials do not discuss them,1,8–9 indeed the dog-

leg design violates principles of balance and uniformity usually considered optimal 

for cross-over designs.10 Reviews of stepped wedge designs have asked whether 

designs with small numbers of steps should be considered methodologically 

distinct,11–12 but this seems to apply particularly to studies with two steps rather than 

three: in a recent review of 25 stepped wedge trials, nine had two steps but only one 

had three (and this was not a dog-leg design).12 Stepped wedge designs are often 

motivated by practical concerns – limited resources requiring staggering of the 

intervention; clustering of the participants; an intervention which was due to be rolled 

out anyway – whereas the dog-leg design is simply motivated by a desire to increase 

statistical power. Given its interesting properties and its simplicity, we think the dog-

leg design is a valuable addition to the methodologist’s toolkit. 
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Appendix 
 

Let iky be the mean outcome in group i at time k. If we assume a treatment effect 

estimate of the form 

 

,ˆ
32222111 ydycybya   

 

then for ̂  to be unbiased we need 

 

a + b + c + d = 0; 

c + d = 0; 

a + c = 1. 

 

Hence the estimate has the form 

 

.)1()1(ˆ
32222111 yayayaya   

 

This has variance 
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1
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where 

 

 
2 = b

2 + w
2, 

r = b
2 / (b

2 + w
2), 

p = n / N, 

 

which is minimised when a = ½ with the value 
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Figure legends 

 

Figure 1. Schematic representations of the dog-leg design: (a) time-line from 

randomisation in each of the three trial arms; (b) schedule of assessments (a shaded 

square indicates no assessment). 

 

Figure 2. Relative efficiency (defined as the inverse ratio of sample sizes required to 

achieve the same power) of the dog-leg design compared with an analysis of 

covariance design: (a) according to the proportion, p, allocated to each of groups 1 

and 3; (b) according to the correlation, r, between outcomes assessed in the same 

individual before and after intervention (“ratio” on the graphs refers to the allocation 

ratios to the three trial arms).  

 

Figure 3. Schematic representations of the augmented dog-leg design: (a) time-line 

from randomisation in each of the three trial arms; (b) schedule of assessments (the 

shaded square indicates no assessment). 

 

Figure 4. Relative efficiency of the augmented dog-leg design compared with an 

analysis of covariance design: (a) according to the proportion, p, allocated to each of 

groups 2 and 3; (b) according to the correlation, r, between outcomes assessed in the 

same individual in different periods. 

 

Figure 5. Relative efficiency of the 1:1:1 augmented dog-leg design compared with 

the 1:1:1 dog-leg design, according to the correlation, r, between outcomes assessed 

in the same individual in different periods. 
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Table 1. Sample size needed in each arm to achieve 80% or 90% power at the 5% 

significance level, for different assumed effect sizes (treatment difference divided by 

standard deviation of outcome), using a dog-leg design with 1:1:1 allocation to the 

three arms. 

 

Power Effect size 

Correlation between baseline and follow-up 

0·1 0·2 0·3 0·4 0·5 0·6 0·7 

                  

80% 0·1 747 708 669 630 590 551 512 

 

0·2 188 178 169 159 149 139 129 

 

0·3 85 80 76 72 67 63 58 

 

0·4 48 46 43 41 39 36 34 

 

0·5 32 30 28 27 25 24 22 

         90% 0·1 1000 947 895 842 790 737 685 

 

0·2 251 238 225 212 199 186 173 

 

0·3 113 107 101 95 89 84 78 

 

0·4 64 61 58 54 51 48 44 

  0·5 42 40 38 35 33 31 29 

 

  

 




