144 research outputs found

    Arguments for a "U.S. Kamioka": SNOLab and its Implications for North American Underground Science Planning

    Full text link
    We argue for a cost-effective, long-term North American underground science strategy based on partnership with Canada and initial construction of a modest U.S. Stage I laboratory designed to complement SNOLab. We show, by reviewing the requirements of detectors now in the R&D phase, that SNOLab and a properly designed U.S. Stage I facility would be capable of meeting the needs of North America's next wave of underground experiments. We discuss one opportunity for creating a Stage I laboratory, the Pioneer tunnel in Washington State, a site that could be developed to provide dedicated, clean, horizontal access. This unused tunnel, part of the deepest (1040 m) tunnel system in the U.S., would allow the U.S. to establish, at low risk and low cost, a laboratory at a depth (2.12 km.w.e., or kilometers of water equivalent) quite similar to that of the Japanese laboratory Kamioka (2.04 km.w.e.). We describe studies of cosmic ray attenuation important to properly locating such a laboratory, and the tunnel improvements that would be required to produce an optimal Stage I facility. We also discuss possibilities for far-future Stage II (3.62 km.w.e.) and Stage III (5.00 km.w.e.) developments at the Pioneer tunnel, should future North American needs for deep space exceed that available at SNOLab.Comment: 23 pages, 10 figures; revised version includes discusion about neutrino-factory magic baseline

    Steiner t-designs for large t

    Full text link
    One of the most central and long-standing open questions in combinatorial design theory concerns the existence of Steiner t-designs for large values of t. Although in his classical 1987 paper, L. Teirlinck has shown that non-trivial t-designs exist for all values of t, no non-trivial Steiner t-design with t > 5 has been constructed until now. Understandingly, the case t = 6 has received considerable attention. There has been recent progress concerning the existence of highly symmetric Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007), pp. 453-476] that no non-trivial flag-transitive Steiner 6-design can exist. In this paper, we announce that essentially also no block-transitive Steiner 6-design can exist.Comment: 9 pages; to appear in: Mathematical Methods in Computer Science 2008, ed. by J.Calmet, W.Geiselmann, J.Mueller-Quade, Springer Lecture Notes in Computer Scienc

    Олесь Бабій - співець слави січових стрільців

    Get PDF
    The Salamanca Formation of the San Jorge Basin (Patagonia, Argentina) preserves critical records of Southern Hemisphere Paleocene biotas, but its age remains poorly resolved, with estimates ranging from Late Cretaceous to middle Paleocene. We report a multi-disciplinary geochronologic study of the Salamanca Formation and overlying Río Chico Group in the western part of the basin. New constraints include (1) an 40Ar/39Ar age determination of 67.31 ± 0.55 Ma from a basalt flow underlying the Salamanca Formation, (2) micropaleontological results indicating an early Danian age for the base of the Salamanca Formation, (3) laser ablation HR-MC-ICP-MS (high resolution-multi collector-inductively coupled plasma-mass spectrometry) U-Pb ages and a high-resolution TIMS (thermal ionization mass spectrometry) age of 61.984 ± 0.041(0.074)[0.100] Ma for zircons from volcanic ash beds in the Peñas Coloradas Formation (Río Chico Group), and (4) paleomagnetic results indicating that the Salamanca Formation in this area is entirely of normal polarity, with reversals occurring in the Río Chico Group. Placing these new age constraints in the context of a sequence stratigraphic model for the basin, we correlate the Salamanca Formation in the study area to Chrons C29n and C28n, with the Banco Negro Inferior (BNI), a mature widespread fossiliferous paleosol unit at the top of the Salamanca Formation, corresponding to the top of Chron C28n. The diverse paleobotanical assemblages from this area are here assigned to C28n (64.67–63.49 Ma), ∼2–3 million years older than previously thought, adding to growing evidence for rapid Southern Hemisphere floral recovery after the Cretaceous-Paleogene extinction. Important Peligran and “Carodnia” zone vertebrate fossil assemblages from coastal BNI and Peñas Coloradas exposures are likely older than previously thought and correlate to the early Torrejonian and early Tiffanian North American Land Mammal Ages, respectively

    The Muonium Atom as a Probe of Physics beyond the Standard Model

    Get PDF
    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium (M=μ+eM = \mu^+ e^-) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.Comment: 15 pages,6 figure

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data

    The rapid atmospheric monitoring system of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
    corecore