1,039 research outputs found

    A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b

    Get PDF
    Exoplanets orbiting close to their parent stars could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to suggest that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start ~2 h before, and end >3 h after the ~1 h optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of ~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12 figures, 2 table

    PathEx: a novel multi factors based datasets selector web tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments have become very popular in life science research. However, if such experiments are only considered independently, the possibilities for analysis and interpretation of many life science phenomena are reduced. The accumulation of publicly available data provides biomedical researchers with a valuable opportunity to either discover new phenomena or improve the interpretation and validation of other phenomena that partially understood or well known. This can only be achieved by intelligently exploiting this rich mine of information.</p> <p>Description</p> <p>Considering that technologies like microarrays remain prohibitively expensive for researchers with limited means to order their own experimental chips, it would be beneficial to re-use previously published microarray data. For certain researchers interested in finding gene groups (requiring many replicates), there is a great need for tools to help them to select appropriate datasets for analysis. These tools may be effective, if and only if, they are able to re-use previously deposited experiments or to create new experiments not initially envisioned by the depositors. However, the generation of new experiments requires that all published microarray data be completely annotated, which is not currently the case. Thus, we propose the PathEx approach.</p> <p>Conclusion</p> <p>This paper presents PathEx, a human-focused web solution built around a two-component system: one database component, enriched with relevant biological information (expression array, omics data, literature) from different sources, and another component comprising sophisticated web interfaces that allow users to perform complex dataset building queries on the contents integrated into the PathEx database.</p

    Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies

    Get PDF
    Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors

    Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Get PDF
    BACKGROUND: Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. RESULTS: We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance). In particular, Cinteny provides: i) integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii) flexibility to adjust the parameters and re-compute the results on-the-fly; iii) ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at . CONCLUSION: Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances. Cinteny can also be used to interactively browse syntenic blocks conserved in multiple genomes, to facilitate genome annotation and validation of assemblies for newly sequenced genomes, and to construct and assess phylogenomic trees

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA-binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Previously, we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al., 2016). Here, we show that this signature also occurs in half of 50 postmortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these ‘like-C9’ brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions.</p> <p>Methods</p> <p>A preliminary conceptual framework for patient-mediated KT interventions was compiled to describe intended purpose, recipients, delivery context, intervention, and outcomes. A realist review will be conducted in consultation with stakeholders from the arthritis and cancer fields to explore how these interventions work, for whom, and in what contexts. To identify patient-mediated KT interventions in these fields, we will search MEDLINE, the Cochrane Library, and EMBASE from 1995 to 2010; scan references of all eligible studies; and examine five years of tables of contents for journals likely to publish quantitative or qualitative studies that focus on developing, implementing, or evaluating patient-mediated KT interventions. Screening and data collection will be performed independently by two individuals.</p> <p>Conclusions</p> <p>The conceptual framework of patient-mediated KT options and outcomes could be used by healthcare providers, managers, educationalists, patient advocates, and policy makers to guide program planning, service delivery, and quality improvement and by us and other researchers to evaluate existing interventions or develop new interventions. By raising awareness of options for involving patients in improving their own care, outcomes based on using a KT approach may lead to greater patient-centred care delivery and improved healthcare outcomes.</p
    corecore