60 research outputs found

    Large-scale Language Model Rescoring on Long-form Data

    Full text link
    In this work, we study the impact of Large-scale Language Models (LLM) on Automated Speech Recognition (ASR) of YouTube videos, which we use as a source for long-form ASR. We demonstrate up to 8\% relative reduction in Word Error Eate (WER) on US English (en-us) and code-switched Indian English (en-in) long-form ASR test sets and a reduction of up to 30\% relative on Salient Term Error Rate (STER) over a strong first-pass baseline that uses a maximum-entropy based language model. Improved lattice processing that results in a lattice with a proper (non-tree) digraph topology and carrying context from the 1-best hypothesis of the previous segment(s) results in significant wins in rescoring with LLMs. We also find that the gains in performance from the combination of LLMs trained on vast quantities of available data (such as C4) and conventional neural LMs is additive and significantly outperforms a strong first-pass baseline with a maximum entropy LM. Copyright 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Comment: 5 pages, accepted in ICASSP 202

    Cell non-autonomous interactions during non-immune stromal progression in the breast tumor microenvironment

    Get PDF
    Summary The breast tumor microenvironment of primary and metastatic sites is a complex milieu of differing cell populations, consisting of tumor cells and the surrounding stroma. Despite recent progress in delineating the immune component of the stroma, the genomic expression landscape of the non-immune stroma (NIS) population and their role in mediating cancer progression and informing effective therapies are not well understood. Here we obtained 52 cell-sorted NIS and epithelial tissue samples across 37 patients from i) normal breast, ii) normal breast adjacent to primary tumor, iii) primary tumor, and iv) metastatic tumor sites. Deep RNA-seq revealed diverging gene expression profiles as the NIS evolves from normal to metastatic tumor tissue, with intra-patient normal-primary variation comparable to inter-patient variation. Significant expression changes between normal and adjacent normal tissue support the notion of a cancer field effect, but extended out to the NIS. Most differentially expressed protein-coding genes and lncRNAs were found to be associated with pattern formation, embryogenesis, and the epithelial-mesenchymal transition. We validated the protein expression changes of a novel candidate gene, C2orf88, by immunohistochemistry staining of representative tissues. Significant mutual information between epithelial ligand and NIS receptor gene expression, across primary and metastatic tissue, suggests a unidirectional model of molecular signaling between the two tissues. Furthermore, survival analyses of 827 luminal breast tumor samples demonstrated the predictive power of the NIS gene expression to inform clinical outcomes. Together, these results highlight the evolution of NIS gene expression in breast tumors and suggest novel therapeutic strategies targeting the microenvironment

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Molecular Characterization of a Fus3/Kss1 Type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1

    Get PDF
    Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst
    corecore