2,798 research outputs found

    Magnetoelastic effects and random magnetic anisotropy in highly strained ultrathin Ni nanowires epitaxied in a SrTiO3 matrix

    Get PDF
    International audienceWe analyze the magnetic anisotropy of Ni nanowires with diameters smaller than 5 nm. The nanowires are vertically epitaxied in a SrTiO 3 (001) matrix which generates huge tensile strains up to 3.6% along the nanowire axis. This leads to an unusual anisotropy, characterized by an easy magnetization plane perpendicular to the nanowire axis. Hysteresis cycles M(H) unveil an overall in-plane isotropy, while an opening of the M(H) cycles and thermal activation measurements indicate the presence of local energy barriers inside the nanowires. Surprisingly, the coercive field H c (T) decays exponentially with increasing temperature, for both the easy plane and the hard axis. Based on these findings, we provide an analysis of magnetoelastic effects in the nanowires. By considering global averaging over the anisotropy distribution and local averaging according to the Random Magnetic Anisotropy model, we find that the global anisotropy, with its hard axis and isotropic easy plane, is related to the mean strain, while coercivity arises from local strain variations. We evidence that a thermally activated anisotropy softening occurs in the nanowires, in addition to Sharrock's law of thermal reduction of coercivity. Possible mechanisms responsible for this thermal softening of anisotropy are proposed and discussed. Our study eventually allows to identify two major competing effects at play in the present system: an increasing magnetic anisotropy with increasing strain and a reduction of the anisotropy with increasing local strain fluctuations

    Electric field control of exchange bias in multiferroic epitaxial heterostructures

    Get PDF
    The magnetic exchange bias between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the ferromagnetic layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an appropriate electric field allows modifying and controlling the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to pave the way towards a new generation of electric-field controlled spintronics devices.Comment: 15 pages, 5 figures, submitte

    Electric field effects on magnetotransport properties of multiferroic Py/YMnO3/Pt heterostructures

    Full text link
    We report on the exchange bias between antiferromagnetic and ferroelectric hexagonal YMnO3 epitaxial thin films sandwiched between a metallic electrode (Pt) and a soft ferromagnetic layer (Py). Anisotropic magnetoresistance measurements are performed to monitor the presence of an exchange bias field. When the heteroestructure is biased by an electric field, it turns out that the exchange bias field is suppressed. We discuss the dependence of the observed effect on the amplitude and polarity of the electric field. Particular attention is devoted to the role of current leakage across the ferroelectric layer.Comment: Accepted for publication in Philosophical Magazine Letters (Special issue on multiferroics

    Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    Get PDF
    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2^2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.Comment: Accepted for publication in Astroparticle Physic

    Kerr measurements on single-domain SrRuO3 thin films

    Get PDF
    We report on the magneto-optical measurements of an epitaxial SrRuO3 film grown on SrTiO3 (0 0 1), which previously was determined to be single domain orientated by x-ray diffraction and Raman spectroscopy techniques. Our experiments reveal a large Kerr rotation, which reaches a maximum value of about 0.5° at low temperature. By measuring magnetic hysteresis loops at different temperatures, we determined the temperature dependence of the Kerr rotation in the polar configuration. Values of the anisotropic magnetoresistance ~ 20% have been measured. These values are remarkably higher than those of other metallic oxides such as manganites. This striking difference can be attributed to the strong spin-orbit interaction of the Ru 4d ion in the SrRuO3 compound

    Epitaxial growth of biferroic YMnO3(0001) on platinum electrodes

    Get PDF
    Epitaxial films of the biferroic YMnO3 (YMO) oxide have been grown on platinum-coated SrTiO3(1 1 1) and Al2O3(0 0 0 1) substrates. The platinum electrodes, (1 1 1) oriented, are templates for the epitaxy of the hexagonal phase of YMO with a (0 0 0 1) out-of-plane orientation, which is of interest as this is the polarization direction of YMO. X-ray diffractometry indicates the presence of two crystal domains, 60° rotated in-plane, in the Pt(1 1 1) layers which subsequently are transferred on the upperlaying YMO. Cross-section analysis by high-resolution transmission electron microscopy (HRTEM) of YMnO3/Pt/SrTiO3(1 1 1) shows high-quality epitaxy and sharp interfaces across the structure in the observed region. We present a detailed study of the epitaxial growth of the hexagonal YMO on the electrodes

    Exchange biasing and electric polarization with YMnO3

    Get PDF
    We report on the growth and functional characterization of epitaxial thin films of the multiferroic YMnO3. We show that using Pt as a seed layer on SrTiO3(111) substrates, epitaxial YMnO3 films (0001) textured are obtained. An atomic force microscope has been used to polarize electric domains revealing the ferroelectric nature of the film. When a Permalloy layer is grown on top of the YMnO3(0001) film, clear indications of exchange bias and enhanced coercivity are observed at low temperature. The observation of coexisting antiferromagnetism and electrical polarization suggests that the biferroic character of YMnO3 can be exploited in novel devices.Comment: 15 pages, 4 figures, Applied Physics Letters (in press

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies
    • 

    corecore