4,186 research outputs found

    Direct torque control of brushless DC drives with reduced torque ripple

    Get PDF
    The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response

    Energy Network Communications and Expandable Control Mechanisms

    Get PDF
    A modular, expandable network requiring little or no calibration is something that is well sought after and would offer great benefits when used for distributed energy generation. Intelligent and adaptive control of such a network offers stability of supply from intermittent sources which, to date, has been hard to achieve. Key to the effective use of such control systems is communications, specifically the exchange of commands and status information between the control systems and the attached devices. Power-line communications has been used in various applications for years and would offer a good mechanism for interconnecting devices on a power grid without the expense of laying new cabling. By using clusters of devices managed by an IEMS (Intelligent Energy Management System) in a branching network fashion (not unlike the grid itself) it would be possible to manage large numbers of devices and high speed with relatively low bandwidth usage increasing the usable range of transmission. Implications of this include improving network efficiency through managed power distribution and increased security of supply

    Four-point functions in N=2 superconformal field theories

    Full text link
    Four-point correlation functions of hypermultiplet bilinear composites are analysed in N=2 superconformal field theory using the superconformal Ward identities and the analyticity properties of the composite operator superfields. It is shown that the complete amplitude is determined by a single arbitrary function of the two conformal cross-ratios of the space-time variables.Comment: 36 pp LaTeX2e, uses amsfonts, amssymb. Some references adde

    Exceptional non-renormalization properties and OPE analysis of chiral four-point functions in N=4 SYM_4

    Full text link
    We show that certain classes of apparently unprotected operators in N=4 SYM_4 do not receive quantum corrections as a consequence of a partial non-renormalization theorem for the 4-point function of chiral primary operators. We develop techniques yielding the asymptotic expansion of the 4-point function of CPOs up to order O(\lambda^2) and we perform a detailed OPE analysis. Our results reveal the existence of new non-renormalized operators of approximate dimension 6.Comment: an error in Sect. 4 corrected; references adde

    Partial non-renormalisation of the stress-tensor four-point function in N=4 SYM and AdS/CFT

    Get PDF
    We show that, although the correlator of four stress-tensor multiplets in N=4 SYM is known to have radiative corrections, certain linear combinations of its components are protected from perturbative renormalisation and remain at their free-field values. This result is valid for weak as well as for strong coupling and for any gauge group. Our argument uses Intriligator's insertion formula, and includes a proof that the possible contact term contributions cannot change the form of the amplitudes. Combining this new non-renormalisation theorem with Maldacena's conjecture allows us to make a prediction for the structure of the corresponding correlator in AdS supergravity. This is verified by first considerably simplifying the strong coupling expression obtained by recent supergravity calculations, and then showing that it does indeed exhibit the expected structure.Comment: 21 pages, no figure

    Movement Detection with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using Powerlink Communication

    Get PDF
    Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and tracking position for an event-based camera. It also includes spurious reduction and filtering algorithms while keeping the main features at the scene. The FPGA node also includes the stack of the network protocol to provide standard communication among other nodes. The powerlink IEEE 61158 industrial network is used to communicate the FPGA with a controller connected to a self-developed two-axis servo-controlled robot. The inverse kinematics model for the robot is included in the controller. To complete the system and provide a comparison, a traditional frame-based camera is also connected to the controller. Response time and robustness to lighting conditions are tested. Results show that, using the event-based camera, the robot can follow the object using fast image recognition achieving up to 85% percent data reduction providing an average of 99 ms faster position detection and less dispersion in position detection (4.96 mm vs. 17.74 mm in the Y-axis position, and 2.18 mm vs. 8.26 mm in the X-axis position) than the frame-based camera, showing that event-based cameras are more stable under light changes. Additionally, event-based cameras offer intrinsic advantages due to the low computational complexity required: small size, low power, reduced data and low cost. Thus, it is demonstrated how the development of new equipment and algorithms can be efficiently integrated into an industrial system, merging commercial industrial equipment with new devices

    Lightweight Hardware Implementation of R-LWE Lattice-Based Cryptography

    Get PDF

    Kostant homology formulas for oscillator modules of Lie superalgebras

    Get PDF
    We provide a systematic approach to obtain formulas for characters and Kostant u{\mathfrak u}-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highest weight representations of Hermitian symmetric pairs. In addition, two new reductive dual pairs related to the above-mentioned u{\mathfrak u}-homology computation are worked out

    The Operator Product Expansion of N=4 SYM and the 4-point Functions of Supergravity

    Get PDF
    We give a detailed Operator Product Expansion interpretation of the results for conformal 4-point functions computed from supergravity through the AdS/CFT duality. We show that for an arbitrary scalar exchange in AdS(d+1) all the power-singular terms in the direct channel limit (and only these terms) exactly match the corresponding contributions to the OPE of the operator dual to the exchanged bulk field and of its conformal descendents. The leading logarithmic singularities in the 4-point functions of protected N=4 super-Yang Mills operators (computed from IIB supergravity on AdS(5) X S(5) are interpreted as O(1/N^2) renormalization effects of the double-trace products appearing in the OPE. Applied to the 4-point functions of the operators Ophi ~ tr F^2 + ... and Oc ~ tr FF~ + ..., this analysis leads to the prediction that the double-trace composites [Ophi Oc] and [Ophi Ophi - Oc Oc] have anomalous dimension -16/N^2 in the large N, large g_{YM}^2 N limit. We describe a geometric picture of the OPE in the dual gravitational theory, for both the power-singular terms and the leading logarithms. We comment on several possible extensions of our results.Comment: 42 page
    • …
    corecore