88 research outputs found

    On the Application of Different Event-Based Sampling Strategies to the Control of a Simple Industrial Process

    Get PDF
    This paper is an experimental study of the utilization of different event-based strategies for the automatic control of a simple but very representative industrial process: the level control of a tank. In an event-based control approach it is the triggering of a specific event, and not the time, that instructs the sensor to send the current state of the process to the controller, and the controller to compute a new control action and send it to the actuator. In the document, five control strategies based on different event-based sampling techniques are described, compared, and contrasted with a classical time-based control approach and a hybrid one. The common denominator in the time, the hybrid, and the event-based control approaches is the controller: a proportional-integral algorithm with adaptations depending on the selected control approach. To compare and contrast each one of the hybrid and the pure event-based control algorithms with the time-based counterpart, the two tasks that a control strategy must achieve (set-point following and disturbance rejection) are independently analyzed. The experimental study provides new proof concerning the ability of event-based control strategies to minimize the data exchange among the control agents (sensors, controllers, actuators) when an error-free control of the process is not a hard requirement

    Movement Detection with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using Powerlink Communication

    Get PDF
    Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and tracking position for an event-based camera. It also includes spurious reduction and filtering algorithms while keeping the main features at the scene. The FPGA node also includes the stack of the network protocol to provide standard communication among other nodes. The powerlink IEEE 61158 industrial network is used to communicate the FPGA with a controller connected to a self-developed two-axis servo-controlled robot. The inverse kinematics model for the robot is included in the controller. To complete the system and provide a comparison, a traditional frame-based camera is also connected to the controller. Response time and robustness to lighting conditions are tested. Results show that, using the event-based camera, the robot can follow the object using fast image recognition achieving up to 85% percent data reduction providing an average of 99 ms faster position detection and less dispersion in position detection (4.96 mm vs. 17.74 mm in the Y-axis position, and 2.18 mm vs. 8.26 mm in the X-axis position) than the frame-based camera, showing that event-based cameras are more stable under light changes. Additionally, event-based cameras offer intrinsic advantages due to the low computational complexity required: small size, low power, reduced data and low cost. Thus, it is demonstrated how the development of new equipment and algorithms can be efficiently integrated into an industrial system, merging commercial industrial equipment with new devices

    Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Get PDF
    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results

    Ability to provide nursing in an intercultural interaction

    Get PDF

    Fault Isolation Filter for Networked Control System with Event-Triggered Sampling Scheme

    Get PDF
    In this paper, the sensor data is transmitted only when the absolute value of difference between the current sensor value and the previously transmitted one is greater than the given threshold value. Based on this send-on-delta scheme which is one of the event-triggered sampling strategies, a modified fault isolation filter for a discrete-time networked control system with multiple faults is then implemented by a particular form of the Kalman filter. The proposed fault isolation filter improves the resource utilization with graceful fault estimation performance degradation. An illustrative example is given to show the efficiency of the proposed method

    Event-triggered Learning for Resource-efficient Networked Control

    Full text link
    Common event-triggered state estimation (ETSE) algorithms save communication in networked control systems by predicting agents' behavior, and transmitting updates only when the predictions deviate significantly. The effectiveness in reducing communication thus heavily depends on the quality of the dynamics models used to predict the agents' states or measurements. Event-triggered learning is proposed herein as a novel concept to further reduce communication: whenever poor communication performance is detected, an identification experiment is triggered and an improved prediction model learned from data. Effective learning triggers are obtained by comparing the actual communication rate with the one that is expected based on the current model. By analyzing statistical properties of the inter-communication times and leveraging powerful convergence results, the proposed trigger is proven to limit learning experiments to the necessary instants. Numerical and physical experiments demonstrate that event-triggered learning improves robustness toward changing environments and yields lower communication rates than common ETSE.Comment: 7 pages, 4 figures, to appear in the 2018 American Control Conference (ACC

    Optimization of the Sampling Periods and the Quantization Bit Lengths for Networked Estimation

    Get PDF
    This paper is concerned with networked estimation, where sensor data are transmitted over a network of limited transmission rate. The transmission rate depends on the sampling periods and the quantization bit lengths. To investigate how the sampling periods and the quantization bit lengths affect the estimation performance, an equation to compute the estimation performance is provided. An algorithm is proposed to find sampling periods and quantization bit lengths combination, which gives good estimation performance while satisfying the transmission rate constraint. Through the numerical example, the proposed algorithm is verified

    Java Simulations of Embedded Control Systems

    Get PDF
    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt

    Performance Analyses and Improvements for the IEEE 802.15.4 CSMA/CA Scheme with Heterogeneous Buffered Conditions

    Get PDF
    Studies of the IEEE 802.15.4 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme have been received considerable attention recently, with most of these studies focusing on homogeneous or saturated traffic. Two novel transmission schemes—OSTS/BSTS (One Service a Time Scheme/Bulk Service a Time Scheme)—are proposed in this paper to improve the behaviors of time-critical buffered networks with heterogeneous unsaturated traffic. First, we propose a model which contains two modified semi-Markov chains and a macro-Markov chain combined with the theory of M/G/1/K queues to evaluate the characteristics of these two improved CSMA/CA schemes, in which traffic arrivals and accessing packets are bestowed with non-preemptive priority over each other, instead of prioritization. Then, throughput, packet delay and energy consumption of unsaturated, unacknowledged IEEE 802.15.4 beacon-enabled networks are predicted based on the overall point of view which takes the dependent interactions of different types of nodes into account. Moreover, performance comparisons of these two schemes with other non-priority schemes are also proposed. Analysis and simulation results show that delay and fairness of our schemes are superior to those of other schemes, while throughput and energy efficiency are superior to others in more heterogeneous situations. Comprehensive simulations demonstrate that the analysis results of these models match well with the simulation results

    Efficiency of Event-Based Sampling According to Error Energy Criterion

    No full text
    The paper belongs to the studies that deal with the effectiveness of the particular event-based sampling scheme compared to the conventional periodic sampling as a reference. In the present study, the event-based sampling according to a constant energy of sampling error is analyzed. This criterion is suitable for applications where the energy of sampling error should be bounded (i.e., in building automation, or in greenhouse climate monitoring and control). Compared to the integral sampling criteria, the error energy criterion gives more weight to extreme sampling error values. The proposed sampling principle extends a range of event-based sampling schemes and makes the choice of particular sampling criterion more flexible to application requirements. In the paper, it is proved analytically that the proposed event-based sampling criterion is more effective than the periodic sampling by a factor defined by the ratio of the maximum to the mean of the cubic root of the signal time-derivative square in the analyzed time interval. Furthermore, it is shown that the sampling according to energy criterion is less effective than the send-on-delta scheme but more effective than the sampling according to integral criterion. On the other hand, it is indicated that higher effectiveness in sampling according to the selected event-based criterion is obtained at the cost of increasing the total sampling error defined as the sum of errors for all the samples taken
    corecore