11 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Pregnancy promotes melanoma metastasis through enhanced lymphangiogenesis

    No full text
    The relationships of pregnancy and melanoma have been debatable. Our aim was to assess the influence of gestation on the course of melanoma in a classic murine model of tumor progression and in women. B16 mouse melanoma cells were injected in nonpregnant or pregnant mice on day 5 of gestation. Animals were evaluated for tumor progression, metastases, and survival. Tumor sections were analyzed for lymphatic and blood vessel number and relative surface and expression of angiogenic growth factors. Finally, primary melanomas from pregnant and nonpregnant women, matched for age and tumor thickness, were also considered. Tumor growth, metastasis, and mortality were increased in B16-injected pregnant mice. Tumors displayed an increase in intratumoral lymphangiogenesis during gestation. This increased lymphatic angiogenesis was not observed in normal skin during gestation, showing its specificity to the tumor. An analysis of melanoma from pregnant and matched nonpregnant women showed a similar increase in lymphatic vessels. Tumors from pregnant mice had increased expression of vascular endothelial growth factor A at the RNA and protein levels. The increased vascular endothelial growth factor A production by melanoma cells could be reproduced in culture using pregnant mouse serum. In conclusion, pregnancy results in increased lymphangiogenesis and subsequent metastasis. Caution should be applied in the management of patients with advanced-stage melanoma during gestation

    Fetal Microchimeric Cells Participate in Tumour Angiogenesis in Melanomas Occurring during Pregnancy

    No full text
    Melanoma is a major malignancy in younger individuals that accounts for 8% of all neoplasias associated with gestation. During pregnancy, a small number of fetal cells enter the maternal circulation. These cells persist and then migrate to various maternal tissues where they may engraft and differentiate, particularly if there is organ damage, adopting the phenotype of the host organ. To understand the relationship between melanoma and pregnancy, we analyzed these tumors in both humans and mice. Fetal cells were detected in 63% of human primary melanomas versus 12% in nevi during pregnancy (P = 0.034) and in 57% of B16 melanomas in pregnant mice but never in normal skin (P = 0.000022). More than 50% of these fetal cells expressed the CD34, CD31, or von Willebrand factor endothelial cell markers. In addition, the Lyve-1 lymphatic antigen was expressed by more than 30% of fetal cells in mice. In conclusion, we show that melanomas during pregnancy frequently harbor fetal cells that have an endothelial phenotype. Further studies are needed to assess whether the fetal contribution to lymphangiogenesis may alter the prognosis of the maternal tumor

    GLI2-Mediated Melanoma Invasion and Metastasis

    No full text
    BACKGROUND: The transforming growth factor-beta (TGF-beta) pathway, which has both tumor suppressor and pro-oncogenic activities, is often constitutively active in melanoma and is a marker of poor prognosis. Recently, we identified GLI2, a mediator of the hedgehog pathway, as a transcriptional target of TGF-beta signaling. METHODS: We used real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting to determine GLI2 expression in human melanoma cell lines and subsequently classified them as GLI2high or as GLI2low according to their relative GLI2 mRNA and protein expression levels. GLI2 expression was reduced in a GLI2high cell line with lentiviral expression of short hairpin RNA targeting GLI2. We assessed the role of GLI2 in melanoma cell invasiveness in Matrigel assays. We measured secretion of matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography and expression of E-cadherin by western blotting and RT-PCR. The role of GLI2 in development of bone metastases was determined following intracardiac injection of melanoma cells in immunocompromised mice (n = 5-13). Human melanoma samples (n = 79) at various stages of disease progression were analyzed for GLI2 and E-cadherin expression by immunohistochemistry, in situ hybridization, or RT-PCR. All statistical tests were two-sided. RESULTS: Among melanoma cell lines, increased GLI2 expression was associated with loss of E-cadherin expression and with increased capacity to invade Matrigel and to form bone metastases in mice (mean osteolytic tumor area: GLI2high vs GLI2low, 2.81 vs 0.93 mm(2), difference = 1.88 mm(2), 95% confidence interval [CI] = 1.16 to 2.60, P < .001). Reduction of GLI2 expression in melanoma cells that had expressed high levels of GLI2 substantially inhibited both basal and TGF-beta-induced cell migration, invasion (mean number of Matrigel invading cells: shGLI2 vs shCtrl (control), 52.6 vs 100, difference = 47.4, 95% CI = 37.0 to 57.8, P = .024; for shGLI2 + TGF-beta vs shCtrl + TGF-beta, 31.0 vs 161.9, difference = -130.9, 95% CI = -96.2 to -165.5, P = .002), and MMP secretion in vitro and the development of experimental bone metastases in mice. Within human melanoma lesions, GLI2 expression was heterogeneous, associated with tumor regions in which E-cadherin was lost and increased in the most aggressive tumors. CONCLUSION: GLI2 was directly involved in driving melanoma invasion and metastasis in this preclinical study
    corecore