243 research outputs found

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    Asteroseismology of delta Scuti stars in open clusters: Praesepe

    Full text link
    The present paper provides a general overview of the asteroseismic potential of delta Scuti stars in clusters, in particular focusing on convection diagnostics. We give a summarise of the last results obtained by the authors for the Praesepe cluster of which five delta Scuti stars are analysed. In that work, linear analysis is confronted with observations, using refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations. A single, complete, and coherent solution for all the selected stars is found, which lead the authors to find important restrictions to the convection description for a certain range of effective temperatures. Furthermore, the method used allowed to give an estimate of the global parameters of the selected stars and constrain the cluster.Comment: 6 pages, 1 figure. Accepted for publication in Communications in Asteroseismolog

    NEAR-SURFACE EFFECTS IN MODELLING OSCILLATIONS OF ETA BOO

    Full text link
    Following the report of solar-like oscillations in the G0 V star eta Boo (Kjeldsen et al. 1995, AJ 109, 1313), a first attempt to model the observed frequencies was made by Christensen-Dalsgaard et al. (1995, ApJ Letters, in press). This attempt succeeded in reproducing the observed frequency separations, although there remained a difference of about 10 microHz between observed and computed frequencies. In those models, the near-surface region of the star was treated rather crudely. Here we consider more sophisticated models that include non-local mixing-length theory, turbulent pressure and nonadiabatic oscillations.Comment: uuencoded and compressed Postscript (2 pages, including figure); To appear in Proceedings of IAU Colloquium 155, "Astrophysical Applications of Stellar Pulsation", Cape Town, South Afric

    Excitation of solar-like oscillations across the HR diagram

    Get PDF
    We extend semi-analytical computations of excitation rates for solar oscillation modes to those of other solar-like oscillating stars to compare them with recent observations. Numerical 3D simulations of surface convective zones of several solar-type oscillating stars are used to characterize the turbulent spectra as well as to constrain the convective velocities and turbulent entropy fluctuations in the uppermost part of the convective zone of such stars. These constraints, coupled with a theoretical model for stochastic excitation, provide the rate 'P' at which energy is injected into the p-modes by turbulent convection. These energy rates are compared with those derived directly from the 3D simulations. The excitation rates obtained from the 3D simulations are systematically lower than those computed from the semi-analytical excitation model. We find that Pmax, the excitation rate maximum, scales as (L/M)^s where s is the slope of the power law and L and M are the mass and luminosity of the 1D stellar model built consistently with the associated 3D simulation. The slope is found to depend significantly on the adopted form of the eddy time-correlation ; using a Lorentzian form results in s=2.6, whereas a Gaussian one gives s=3.1. Finally, values of Vmax, the maximum in the mode velocity, are estimated from the computed power laws for Pmax and we find that Vmax increases as (L/M)^sv. Comparisons with the currently available ground-based observations show that the computations assuming a Lorentzian eddy time-correlation yield a slope, sv, closer to the observed one than the slope obtained when assuming a Gaussian. We show that the spatial resolution of the 3D simulations must be high enough to obtain accurate computed energy rates.Comment: 14 pages ; 7 figures ; accepted for publication in Astrophysics & Astronom

    Pulsations detected in the line profile variations of red giants: Modelling of line moments, line bisector and line shape

    Get PDF
    Contents: So far, red giant oscillations have been studied from radial velocity and/or light curve variations, which reveal frequencies of the oscillation modes. To characterise radial and non-radial oscillations, line profile variations are a valuable diagnostic. Here we present for the first time a line profile analysis of pulsating red giants, taking into account the small line profile variations and the predicted short damping and re-excitation times. We do so by modelling the time variations in the cross correlation profiles in terms of oscillation theory. Aims: The performance of existing diagnostics for mode identification is investigated for known oscillating giants which have very small line profile variations. We modify these diagnostics, perform simulations, and characterise the radial and non-radial modes detected in the cross correlation profiles. Methods: Moments and line bisectors are computed and analysed for four giants. The robustness of the discriminant of the moments against small oscillations with finite lifetimes is investigated. In addition, line profiles are simulated with short damping and re-excitation times and their line shapes are compared with the observations. Results: For three stars, we find evidence for the presence of non-radial pulsation modes, while for ξ\xi Hydrae perhaps only radial modes are present. Furthermore the line bisectors are not able to distinguish between different pulsation modes and are an insufficient diagnostic to discriminate small line profile variations due to oscillations from exoplanet motion.Comment: 12 pages, 10 figures, accepted by A&

    Solar-like oscillations in Procyon A

    Full text link
    The F5 subgiant Procyon A (alpha CMi, HR 2943) was observed with the Coralie fiber-fed echelle spectrograph on the 1.2-m Swiss telescope at La Silla in February 1999. The resulting 908 high-accuracy radial velocities exhibit a mean noise level in the amplitude spectrum of 0.11 m s^-1 at high frequency. These measurements show significant excess in the power spectrum between 0.6-1.6 mHz with 0.60 m s^-1 peak amplitude. An average large spacing of 55.5 uHz has been determined and twenty-three individual frequencies have been identified.Comment: A&A accepte

    Amplitudes and lifetimes of solar-like oscillations observed by CoRoT* Red-giant versus main-sequence stars

    Get PDF
    Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {\mu}Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature than red giants. A single scaling law is derived for mode amplitudes of both red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations.Comment: Accepted in A&A on 2011 February 8th, now includes corrections (results now more precise on \Gamma and A_max in Section 4.3 and 4.4, fig. 7 corrected consequently

    Stellar Model Analysis of the Oscillation Spectrum of eta Bootis Obtained from MOST

    Get PDF
    Eight consecutive low-frequency radial p-modes are identified in the G0 IV star eta Bootis based on 27 days of ultraprecise rapid photometry obtained by the MOST (Microvariability & Oscillations of Stars) satellite. The MOST data extend smoothly to lower overtones the sequence of radial p-modes reported in earlier groundbased spectroscopy by other groups. The lower-overtone modes from the MOST data constrain the interior structure of the model of eta Boo. With the interior fit anchored by the lower-overtone modes seen by MOST, standard models are not able to fit the higher-overtone modes with the same level of accuracy. The discrepancy is similar to the discrepancy that exists between the Sun's observed p-mode frequencies and the p-mode frequencies of the standard solar model. This discrepancy promises to be a powerful constraint on models of 3D convection.Comment: 30 pages with 14 figures. Accepted for publication in Ap

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and
    corecore