83 research outputs found

    Face Recognition Using Fractal Codes

    Get PDF
    In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the imag

    “Biophilic” planning, a new approach in achieving liveable cities in Iranian new towns – Hashtgerd case study

    Get PDF
    Urbanization development in Iran has caused increasing critical problems, with the result that there is a need to review urban planning in this country. This article aims to explore the impact of biophilic planning on liveability, with special focus on the role of nature as part of society. The study was done in Hashtgerd, an Iranian new town, where an environmental analysis showed that this town can be developed on the West, North and North-West, due to the natural potential of the area. Based on the literature review and content analysis (selective coding), components of biophilic planning and liveability of new towns have been identified and used to test the opinions of 382 residents in Hashtgerd on biophilic planning and liveability of a new town in Iran. The data from the questionnaire were collected and processed, using SPSS software. The final dependent and independent variables were identified and analysed. Correlation coefficients in the regression analysis were used to analyse the effects on each other between the identified dependent and independent variables. According to the results and findings, urban management (a component of biophilic planning) has the biggest effect in achieving liveable cities. The outcome of the study is crucial for construction and urban planning team members, clients and environmentalists. Another reason, that is particularly relevant to developing countries, is the natural potential and related industries to create beneficial social and economic impacts.&nbsp

    Persian Semantic Role Labeling Based on Dependency Tree

    Get PDF
    Semantic role labeling is the task of attaching semantic tags to the words according to the occurred event in the sentence. Persian semantic role labeling is a challenging task that most methods so far in this regard depend on a huge number of handcrafted features and are done on feature engineering to attain high performance. On the other hand, by considering the Free-Word-Order and Subject-Object-Verb-Order characteristics of Persian, the verbal predicate’s arguments are often distant and create long-range dependencies. The long-range dependencies can hardly be modeled by these methods. Our goal is to achieve a better performance only with minimal feature engineering and also to capture long-range dependencies in a sentence. To these ends, in this paper a deep model for semantic role labeling is developed with the help of dependency tree for Persian. In our proposed method, for each verbal predicate, the potential arguments are identified with the help of dependency relationships, and then the dependency path for each pair of predicate and its candidate argument is embedded using the information in the dependency trees. In the next step, we employed a bi-directional recurrent neural network with long short-term memory units to transform word features into semantic role scores. Experiments have been done on the first semantic role corpus in Persian language and the corpus provided by the authors. The achieved Macro-average F1-measure is 80.01 for the first corpus and 82.48 for the second one

    Epidemiological Study of Cutaneous Leishmaniasis in Neyshabur County, East of Iran (2011-2017)

    Get PDF
    BACKGROUND: Cutaneous Leishmaniasis (CL) isn’t a deadly disease, but it has always been taken into consideration due to the long-term involvement of patients with skin. Various factors can play an intervening role in increasing the rate of disease. The present study aimed to evaluate the prevalence and associated factors of disease from 2011-2017 and provide appropriate control strategies for reducing its incidence in Neyshabur county. METHODS: All patients with CL, who had medical records in the health centres of Neyshabur from 2011 to 2017, were examined for conducting this analytical-descriptive study. Data were analyzed by descriptive statistics and chi-square test at a significant level of 0.95 using SPSS V22. RESULTS: Findings indicated that the highest annual incidence was in 2016 (229 patients), and the least incidence was in 2014 (100 patients). The majority of patients were under 10 years of age and 51.7% of patients were male. About 59.5% of patients were living in cities and 35% of them were living in North of Neyshabur city. Hands were the most affected part of the body (56.0%) followed by trunk (1.3%). Most patients (69.9%) were treated with topical regimens. CONCLUSION: This study showed that CL was hypo-endemic in Neyshabur. Also, the disease was more prevalent in urban areas. Therefore, appropriate health measures to improve environmental conditions, public health educations, and the public awareness of the positive impact of early diagnosis of disease in the success of treatment (especially for inhabitance suburbanite) are essential

    Effective image clustering based on human mental search

    Get PDF
    Image segmentation is one of the fundamental techniques in image analysis. One group of segmentation techniques is based on clustering principles, where association of image pixels is based on a similarity criterion. Conventional clustering algorithms, such as k-means, can be used for this purpose but have several drawbacks including dependence on initialisation conditions and a higher likelihood of converging to local rather than global optima. In this paper, we propose a clustering-based image segmentation method that is based on the human mental search (HMS) algorithm. HMS is a recent metaheuristic algorithm based on the manner of searching in the space of online auctions. In HMS, each candidate solution is called a bid, and the algorithm comprises three major stages: mental search, which explores the vicinity of a solution using Levy flight to find better solutions; grouping which places a set of candidate solutions into a group using a clustering algorithm; and moving bids toward promising solution areas. In our image clustering application, bids encode the cluster centres and we evaluate three different objective functions. In an extensive set of experiments, we compare the efficacy of our proposed approach with several state-of-the-art metaheuristic algorithms including a genetic algorithm, differential evolution, particle swarm optimisation, artificial bee colony algorithm, and harmony search. We assess the techniques based on a variety of metrics including the objective functions, a cluster validity index, as well as unsupervised and supervised image segmentation criteria. Moreover, we perform some tests in higher dimensions, and conduct a statistical analysis to compare our proposed method to its competitors. The obtained results clearly show that the proposed algorithm represents a highly effective approach to image clustering that outperforms other state-of-the-art techniques

    Is exercise a medicine or a vaccine adjuvant? A Look at Obesity and Covid-19

    Get PDF
    Dear Editor-in-ChiefIn recent years, exercise has been called an ‘amazing’ medicine and a ‘miracle’ cure. Scientific research shows that regular exercise is effective in preventing and treating many common diseases, including type 2 diabetes, dementia, depression, heart disease, some cancers, and other common diseases (Fang et al., 2022). In fact, exercise in a specific dose and formula is prescribed for each patient who is diagnosed with the disease. The prescription should be very clear in terms of modality, intensity, frequency, and duration.In this regard, the American College of Sports Medicine (ACSM) has launched the "Exercise is Medicine" project to recognize the myriad health benefits of exercise. These include reducing the incidence of a number of different cancers, lowering the risk of excessive weight gain (along with related health problems as well as diabetes), and improving cardiovascular health (as well as reducing the risk of high blood pressure in addition to heart stroke) (Ghardashi-Afousi et al., 2018).The acute effect of exercise has been shown to lead to a transient decrease in triglyceride levels, an increase in HDL cholesterol levels, a decrease in blood pressure, a decrease in insulin resistance, and an improvement in glucose control. Regular exercise increases blood flow and oxygen to the brain which improves memory and mental function. It also increases the production of a number of hormones that stimulate the growth of brain cells (Ueno-Pardi et al., 2022).In addition, some literature describes exercise even better than medicine. For example, a review of more than 300 randomized controlled trials found that exercise was as effective as drugs at risk for heart disease and diabetes, and more effective than post-stroke rehabilitation drugs (Naci & Ioannidis, 2013).It has previously been suggested that vaccinating children with exercise can control the obesity epidemic in them. Recently, in the coronavirus outbreak, exercise has been referred to as a vaccine or vaccine adjuvant (Naci & Ioannidis, 2013). A recent study in the British Journal of Sports Medicine (BJSM) suggests that routine activities may protect people with COVID-19 from serious illness.Evidence suggests that exercise and obesity are involved in the pathogenesis of COVID-19 disease and vaccine efficacy. Regular exercise has been shown to exert immune regulatory effects, control viral gateway, modulate inflammation, stimulate NO production pathways, and control oxidative stress. Adaptation to ordinary exercise seems to affect immune function, particularly innate and adaptive immunity, and ameliorate humoral immunity with enhanced vaccination responses. Exercise may at least partially reduce the detrimental effect of SARS-CoV-2 binding to the ECA2 receptor. Exercise training can activate anti-inflammatory signaling pathways (Shirvani & Rostamkhani, 2020). Today, COVID-19 vaccination has shown that individuals who exercise continuously and regularly may develop higher antibody titers to the SARS-CoV-2 strain contained in the vaccine compared to individuals who do not exercise (Hallam et al., 2022).On the other hand, understanding how obesity and adiposity affect immunity and more specifically the production and function of antibodies is of great importance (Malavazos et al., 2020). Numerous studies have shown the effect of obesity on antibody properties. For example, adaptive immune responses to influenza virus are impaired during obesity, innate and adaptive immune responses to influenza are delayed in obese patients, and obesity was suggested to decline influenza antibody titers following influenza vaccination and reduce vaccine efficacy with poor vaccine immunization. In the same manner, lower COVID-19 mRNA vaccine-induced antibody titers have been related to central obesity and severe acute respiratory syndrome (Ghanemi et al., 2021).     In general, recent research on the Covid-19 epidemic has shown that exercise is not only a wonderful medicine in the prevention and treatment of many diseases, but also regular exercise can act as an adjunct vaccine. Therefore, prescribing exercise will always help promote community health and is completely in line with the P4 medicine approach (predictive, preventative, personalized, and participatory)

    A novel deletion mutation in ASPM gene in an Iranian family with autosomal recessive primary microcephaly

    Get PDF
    How to Cite This Article: Akbarizar E, Ebrahimpour M, Akbari S, Arzhanghi S, Abedini SS, Najmabadi H, Kahrizi K. A Novel Deletion Mutation in ASPM Gene in an Iranian Family with Autosomal Recessive Primary Microcephaly. Iran J Child Neurol.  2013 Spring;7(2):23-30. ObjectiveAutosomal recessive primary microcephaly (MCPH) is a neurodevelopmental and genetically heterogeneous disorder with decreased head circumference due to the abnormality in fetal brain growth. To date, nine loci and nine genes responsible for the situation have been identified. Mutations in the ASPM gene (MCPH5) is the most common cause of MCPH. The ASPM gene with 28 exons is essential for normal mitotic spindle function in embryonic neuroblasts.Materials & MethodsWe have ascertained twenty-two consanguineous families withintellectual disability and different ethnic backgrounds from Iran. Ten out of twenty-two families showed primary microcephaly in clinical examination. We investigated MCPH5 locus using homozygosity mapping by microsatellite marker. ResultSequence analysis of exon 8 revealed a deletion of nucleotide (T) in donor site of splicing site of ASPM in one family. The remaining nine families were not linked to any of the known loci. More investigation will be needed to detect the causative defect in these families.ConlusionWe detected a novel mutation in the donor splicing site of exon 8 of the ASPM gene. This deletion mutation can alter the ASPM transcript leading to functional impairment of the gene product. References1. Pattison L, Crow YJ, Deeble VJ, Jackson AP, Jafri H, Rashid Y, et al. A Fifth Locus for Primary Autosomal Recessive Microcephaly Maps to Chromosome 1q31. Am J Hum Genet 2000;67(6):1578-80.2. Darvish H, Esmaeeli-Nieh S, Monajemi G, Mohseni M, Ghasemi-Firouzabadi S, Abedini S, et al. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. Journal of Medical Genetics 2010;47(12):823-8.3. Tolmie JL, M M, JB S, D D, JM C. Microcephaly: genetic counselling and antenatal diagnosis after the birth of an affected child. Am JMed Genet 1987;27583-94.4. Cowie V. The genetics and sub-classification of microcephaly. J Ment Defic Res 1960;4:42-7. 5. Woods C. Human microcephaly. Curr Opin Neurobiol 2004;14(1):112-7.6. Kaindl AM PS, Kumar P, Kraemer N, Issa L, Zwirner A, Gerard B, Verloes A MS,et al.Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2010;90:363-83.7. Kumar A BS, Babu M, Markandaya M, Girimaji SC. Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet 2004;66:341-8.8. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. The American Journal of Human Genetics 2002;71(1):136-42.9. Roberts E, Jackson AP, Carradice AC, Deeble VJ, Mannan J, Rashid Y, et al. The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13. 1-13.2. European journal of human genetics: EJHG  1999;7(7):815.10. Kousar R, Hassan MJ, Khan B, Basit S, Mahmood S, Mir A, et al. Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly. BMC neurology 2011;11(1):119.11. Evans PD, Vallender EJ, Lahn BT. Molecular evolutionof the brain size regulator genes<i> CDK5RAP2</i>and<i> CENPJ</i>. Gene 2006;375:75-9.12. Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O. Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA research 2001;8(2):85-95. 13. Jamieson CR GC, Abramowicz MJ. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet 1999;65:1465-9.14. Genin A, Desir J, Lambert N, Biervliet M, Van Der Aa N, Pierquin G, et al. Kinetochore KMN network gene CASC5 mutated in Primary Microcephaly. Human molecular genetics 2012.15. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major determinant of cerebral cortical size. Nature genetics 2002;32(2):316-20.16. Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proceedings of the National Academy of Sciences 2006;103(27):10438-43.17. Leal G, Roberts E, Silva E, Costa S, Hampshire D, Woods C. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. Journal of Medical Genetics 2003;40(7):540-2.18. Kumar A. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. The American Journal of Human Genetics 2009;84(2):286-90.19. Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, et al. Atruncating mutation on CEP135 causes primary microcephaly and disturbed centrosomal function.AMJ,HumGenet 2012;90:871-8.20. Guernsey DL, Jiang H, Hussin J, Arnold M, Bouyakdan K, Perry S, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. The American Journal of Human Genetics 2010;87(1):40-51.21. Gul A, Hassan MJ, Mahmood S, Chen W, Rahmani S, Naseer MI, et al. Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPM gene. Neurogenetics 2006;7(2):105-10.22. Roberts E, Hampshire D, Springell K, Pattison L, Y C, Jafri H, et al. Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation. J Med Genet 2002;39:718–721.23. Woods CG BJ, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 2005 May;76(5):717-28.24. Kouprina N, Pavlicek A, Collins NK, Nakano M, Noskov VN, Ohzeki JI, et al. The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Human Molecular Genetics 2005;14(15):2155-65.25. Bond J, Scott S, Hampshire DJ, Springell K, Corry P, Abramowicz MJ, et al. Protein-Truncating Mutations in< i> ASPM</i> Cause Variable Reduction in Brain Size. The American Journal of Human Genetics 2003;73(5):1170-7.26. Pichon B, Vankerckhove S, Bourrouillou G, Duprez L, Abramowicz MJ. A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly. European journal of Human Genetics 2004;12(5):419-21.27. Garshasbi.M, Motazacker M, Kahrizi K, Behjati F, Abedini S, Nieh S, et al. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. Hum Genet 2006 Feb;118(6):708-15.28. Jackson A, McHale D, Campbell D, Jafri H, Rashid Y, Mannan J, et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 1998 Aug;63(2):541-6.29. Moynihan L, Jackson A, Roberts E, Karbani G, Lewis I, Corry P, et al. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 2000 Feb;66(2):724-7.30. Bond J, Roberts E, Springell K, Lizarraga S, Scott S, Higgins J, et al. A centrosomalmechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet.2005 Apr;37(4):353-5. Nat Genet 2005 Apr;37(4):353-5.31. Jamieson C, Govaerts C, Abramowicz M, J. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet. 1999;65:1465-9

    The Impact of Pursed-lips Breathing Maneuver on Cardiac, Respiratory, and Oxygenation Parameters in COPD Patients

    Get PDF
    BACKGROUND: Respiratory system, together with the cardiovascular and central nervous system, is responsible for all processes related to oxygenation and hemodynamics and the defect in the functioning of each of these systems, along with ageing, can have mutual effects on their performance and physiological symptoms. The use of Pursed-lips Breathing (PLB) training is an essential part of the treatment of patients with the obstructive pulmonary disease, PLB stimulates the autonomic nervous system and causes relaxation and improvement of physiological parameters. AIM: This study was conducted to evaluate the effect of PLB on cardiac, pulmonary and oxygenation level in patients with Chronic Obstructive Pulmonary Disease (COPD). METHODS: A three-group clinical trial study with experimental and control which was purposefully conducted with the participation of patients with COPD and healthy individuals referring to Madani hospital Khoy, in 2017. The sample size was selected to be 60 subjects. The patients were randomly allocated to two groups of intervention and control with 20 patients, and 20 healthy subjects were assigned to the healthy intervention group. The demographic, anthropometric information form and checklist recording changes in levels of oxygenation, respiration, temperature, heart rate and blood pressure with cardiopulmonary follow up in three stages before, during and after PLB were used for data collection. Data were analysed using descriptive statistics, repeated measure test, ANOVA, and Chi-square. RESULTS: On evaluation within the COPD patient intervention group in Saturation of Peripheral Oxygen (SPO2) index with the mean difference of 2.05 percent, Respiratory Rate(RR)-0.65 minute and Pulse Rate(PR)-1.6 bpm was significant (p ≤ 0.05), and systolic blood pressure index in healthy subjects was increased (3.35 mmHg). CONCLUSION: The results of this study indicated that using effective PLB as an easy, inexpensive, non- invasive and non-pharmacological method is considered as an important factor in improving the status of oxygenation and physiological indicators in patients with COPD and should be considered as an important part of rehabilitation programs for these patients

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030
    corecore