27 research outputs found

    Toward a Manifold Encoding Neural Responses

    Get PDF
    Understanding circuit properties from physiological data presents two challenges: (i) recordings do not reveal connectivity, and (ii) stimuli only exercise circuits to a limited extent. We address these challenges for the mouse visual system with a novel neural manifold obtained using unsupervised algorithms. Each point in our manifold is a neuron; nearby neurons respond similarly in time to similar parts of a stimulus ensemble. This ensemble includes drifting gratings and flows, i.e., patterns resembling what a mouse would “see” running through fields. Regarding (i), our manifold differs from the standard practice in computational neuroscience: embedding trials in neural coordinates. Topology matters: we infer that, if the circuit consists of separate components, the manifold is discontinuous (illustrated with retinal data). If there is significant overlap between circuits, the manifold is nearly-continuous (cortical data). Regarding (ii), most of the cortical manifold is not activated with conventional gratings, despite their prominence in laboratory settings. Our manifold suggests organizing cortical circuitry by a few specialized circuits for specific members of the stimulus ensemble, together with circuits involving ‘multi-stimuli’-responding neurons. To approach real circuits, local neighborhoods in the manifold are identified with actual circuit components. For retinal data, we show these components correspond to distinct ganglion cell types by their mosaic-like receptive field organization, while for cortical data, neighborhoods organize neurons by type (excitatory/inhibitory) and anatomical layer. In summary: the topology of neural organization reflects well the underlying anatomy and physiology of the retina and the visual cortex

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    The Comparison of Defense Mechanism Styles and Personality Characteristics in Addicts and Healthy Individuals

    No full text
    Aim: The purpose of this study was to comprise of psychological defense mechanism styles and personality characteristics in addicts and healthy individuals. Method: In this causal-comparative study, 70 addicts person (with an average age of 37.29±9.81and the age range 23 to 58 years) were selected via accessible sampling method of clinics and Hamadan’s addicted self-representing center during the Autumn of 2011, The number of 70 relatives of these people that demographic variables were matched as possible with the comparison group were selected. Both groups were asked to respond to the defense mechanism style and Eysenk personality Questionnaires. Results: The result of this study showed that the scores mean of addicts were higher than healthy people on immature defense mechanism style, neourotism, and neurotic and extraversion personality characteristics and lower than in mature defense style variables. Conclusion: Based on the result of this study there was a significant difference between addict individuals and healthy people in defense mechanism and personality characteristics

    Designing and implementation of a fuzzy-dynamic model to evaluate system's risk and reliability 15 16

    No full text
    Abstract. The purpose of this article is to permit the system safety and reliability analysts to evaluate the criticality or risk associated with item failure modes. The factors considered in traditional failure mode and effect analysis (FMEA) for risk assessment are frequency of occurrence (O), severity (S) and detectability (D) of an item failure mode. Because of the subjective, qualitative and dynamic nature of the information and to make the analysis more consistent and logical, an approach using fuzzy logic and system dynamics methodology is proposed. In the proposed approach, severity is replaced by dependency parameter then, these parameters are represented as members of a fuzzy set fuzzified by using appropriate membership functions and are evaluated in fuzzy inference engine, which makes use of well-defined rule base and fuzzy logic operations to determine the value of parameters related to system's transfer functions. The fuzzy conclusion is then defuzzified to get transfer function for risk and failure rate. The applicability of the proposed approach is investigated with the help of an illustrative case study from the automotive industry. The results provide an alternate solution to that obtained by the traditional method. The suggested assessment model was developed using toolbox platform of MATLAB 6.5 R.13
    corecore