148 research outputs found

    Health‐Damaging Climate Events Highlight the Need for Interdisciplinary, Engaged Research

    Get PDF
    In 2023 human populations experienced multiple record‐breaking climate events, with widespread impacts on human health and well‐being. These events include extreme heat domes, drought, severe storms, flooding, and wildfires. Due to inherent lags in the climate system, we can expect such extremes to continue for multiple decades after reaching net zero carbon emissions. Unfortunately, despite these significant current and future impacts, funding for research in climate and health has lagged behind that for other geoscience and biomedical research. While some initial efforts from funding agencies are evident, there is still a significant need to increase the resources available for multidisciplinary research in the face of this issue. As a group of experts at this important intersection, we call for a more concerted effort to encourage interdisciplinary and policy‐relevant investigations into the detrimental health effects of continued climate change

    The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity?

    Get PDF
    Background: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. Main body: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. Conclusions: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity

    The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?

    Get PDF
    Background: Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The ‘surface’ also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. Main body: Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physicochemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. Conclusions: Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity. Keywords: Silica, Silicosis, Lung cancer, Auto-immune diseases, Surface reactivity, Silanol, Coating, Modelling, Spectroscopy, Atomic force microscop

    The spatial extent of tephra deposition and environmental impacts from the 1912 Novarupta eruption

    Get PDF
    The eruption of Novarupta within the Katmai Volcanic Cluster, south-west Alaska, in June 1912 was the most voluminous eruption of the twentieth century but the distal distribution of tephra deposition is inadequately quantified. We present new syntheses of published tephrostratigraphic studies and a large quantity of previously un-investigated historical records. For the first time, we apply a geostatistical technique, indicator kriging, to integrate and interpolate such data. Our results show evidence for tephra deposition across much of Alaska, Yukon, the northern Pacific, western British Columbia and northwestern Washington. The most distal tephra deposition was observed around 2,500 km downwind from the volcano. Associated with tephra deposition are many accounts of acid deposition and consequent impacts on vegetation and human health. Kriging offers several advantages as a means to integrate and present such data. Future eruptions of a scale similar to the 1912 event have the potential to cause widespread disruption. Historical records of tephra deposition extend far beyond the limit of deposition constrained by tephrostratigraphic records. The distal portion of tephra fallout deposits is rarely adequately mapped by tephrostratigraphy alone; contemporaneous reports of fallout can provide important constraints on the extent of impacts following large explosive eruptions

    Rapid onset of mafic magmatism facilitated by volcanic edifice collapse

    Get PDF
    Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse

    First discovery of Holocene cryptotephra in Amazonia

    Get PDF
    The use of volcanic ash layers for dating and correlation (tephrochronology) is widely applied in the study of past environmental changes. We describe the first cryptotephra (non-visible volcanic ash horizon) to be identified in the Amazon basin, which is tentatively attributed to a source in the Ecuadorian Eastern Cordillera (0–1°S, 78-79°W), some 500-600 km away from our field site in the Peruvian Amazon. Our discovery 1) indicates that the Amazon basin has been subject to volcanic ash fallout during the recent past; 2) highlights the opportunities for using cryptotephras to date palaeoenvironmental records in the Amazon basin and 3) indicates that cryptotephra layers are preserved in a dynamic Amazonian peatland, suggesting that similar layers are likely to be present in other peat sequences that are important for palaeoenvironmental reconstruction. The discovery of cryptotephra in an Amazonian peatland provides a baseline for further investigation of Amazonian tephrochronology and the potential impacts of volcanism on vegetation
    corecore