1,963 research outputs found

    Audit of antenatal care at a community health centre in Tshwane North subdistrict, Gauteng province

    Get PDF
    Objective: Few studies document the level of compliance with antenatal care protocols in primary health care in South Africa. The aim of this study was to conduct an audit of antenatal care at a community health centre in Tshwane North subdistrict in order to measure the level of compliance of maternity staff with antenatal care protocols. This study was part of a larger study on a quality improvement initiative in primary health care.Design and setting: A retrospective cross-sectional descriptive study was undertaken of women attending antenatal care at the study clinic. Data were collected through a review of the women’s antenatal cards using criteria from the Guidelines for maternity care in South Africa and the basic antenatal care (BANC) checklist. In addition, qualitative interviews of maternity staff were undertaken in order to investigate reasons for  noncompliance with the maternity care guidelines.Results: The overall rate of compliance of nurses was 85.1%. This is less than optimal. The response (decision-making and interpretation)  component of compliance was only 57.6%. This represents a significant missed opportunity in terms of quality of antenatal care. Important  protocols, such as that pertaining to the prevention of mother-to-child transmission (PMTCT) of human immunodeficiency virus, were also not carried out correctly. The response to PMTCT protocols was 50% only, another significant opportunity missed. Administrative factors, patient-related factors and deficiencies in the knowledge and skills of nurses were identified and documented as reasons for noncompliance.Conclusion: The study has provided a detailed picture of the situation with regard to non-compliance with the maternity care guidelines in a primary health care facility. Therefore, these data are very important in terms of quality assurance of maternity services in primary health care

    A Pseudo-Two-Dimensional (P2D) Model for FeS2 Conversion Cathode Batteries

    Full text link
    Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 - a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle-Fuller-Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. We provide the code as an open-source Python Battery Mathematical Modelling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials

    Analysis of model rotor blade pressures during parallel interaction with twin vortices

    Get PDF
    This paper presents and provides analysis of unsteady surface pressures measured on a model rotor blade as the blade experienced near parallel blade vortex interaction with a twin vortex system. To provide a basis for analysis, the vortex system was characterized by hot-wire measurements made in the interaction plane but in the absence of the rotor. The unsteady pressure response resulting from a single vortex interaction is then presented to provide a frame of reference for the twin vortex results. A series of twin vortex interaction cases are then presented and analyzed. It is shown that the unsteady blade pressures and forces are very sensitive to the inclination angle and separation distance of the vortex pair. When the vortex cores lie almost parallel to the blade chord, the interaction is characterized by a two-stage response associated with the sequential passage of the two cores. Conversely, when the cores lie on a plane that is almost perpendicular to the blade chord, the response is similar to that of a single vortex interaction. In all cases, the normal force response is consistent with the distribution of vertical velocity in the flow field of the vortex system. The pitching moment response, on the other hand, depends on the localized suction associated with the vortex cores as they traverse the blade chord

    Learning and reaction times in mouse touchscreen tests are differentially impacted by mutations in genes encoding postsynaptic interacting proteins SYNGAP1 , NLGN3 , DLGAP1 , DLGAP2 and SHANK2

    Get PDF
    The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms. Here, by using genetically engineered mice and innovative touchscreen-based cognitive testing, we sought to investigate whether loss-of-function mutations in genes encoding key interactors of the PSD-95 protein complex display shared phenotypes in associative learning, updating of learned associations and reaction times. Our genetic dissection of mice with loss-of-function mutations in Syngap1, Nlgn3, Dlgap1, Dlgap2 and Shank2 showed that distinct components of the PSD-95 protein complex differentially regulate learning, cognitive flexibility and reaction times in cognitive processing. These data provide insights for understanding how human mutations in these genes lead to the manifestation of diverse and complex phenotypes in NDDs

    Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

    Get PDF
    The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe

    Observation of a new excitation in bcc solid 4He by inelastic neutron scattering

    Full text link
    We report neutron scattering measurements of the phonons in bcc solid 4He. In general, only 3 accoustic phonon branches should exist in a monoatomic cubic crystal. In addition to these phonon branches, we found a new ''optic-like'' mode along the [110] direction. One possible interpretation of this new mode is in terms of localized excitations unique to a quantum solid.Comment: Text and 4 figures, to appear in Phys. Rev. Let

    The quest for companions to post-common envelope binaries. II. NSVS14256825 and HS0705+6700

    Get PDF
    We report new mid-eclipse times of the two close binaries NSVS14256825 and HS0705+6700, harboring an sdB primary and a low-mass main-sequence secondary. Both objects display clear variations in the measured orbital period, which can be explained by the action of a third object orbiting the binary. If this interpretation is correct, the third object in NSVS14256825 is a giant planet with a mass of roughly 12 M_Jup. For HS0705+6700, we provide evidence that strengthens the case for the suggested periodic nature of the eclipse time variation and reduces the uncertainties in the parameters of the brown dwarf implied by that model. The derived period is 8.4 yr and the mass is 31 M_Jup, if the orbit is coplanar with the binary. This research is part of the PlanetFinders project, an ongoing collaboration between professional astronomers and student groups at high schools.Comment: Accepted by Astron. and Astrophy

    Mach Cones in Quark Gluon Plasma

    Get PDF
    The experimental azimuthal dihadron distributions at RHIC show a double peak structure in the away side (Δϕ=π±1.2\Delta \phi = \pi \pm 1.2 rad.) for intermediate ptp_t particles. A variety of models have appeared trying to describe this modification. We will review most of them, with special emphasis in the Conical Flow scenario in which the observed shape is a consequence of the emission of sound by a supersonic high momentum particle propagating in the Quark Gluon Plasma.Comment: 8 pages, 3 figures, Invited plenary talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    A tentative Replica Study of the Glass Transition

    Full text link
    We propose a method to study quantitatively the glass transition in a system of interacting particles. In spite of the absence of any quenched disorder, we introduce a replicated version of the hypernetted chain equations. The solution of these equations, for hard or soft spheres, signals a transition to the glass phase. However the predicted value of the energy and specific heat in the glass phase are wrong, calling for an improvement of this method.Comment: 9 pages, four postcript figures attache

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information
    corecore