58 research outputs found

    FANTOM5 CAGE profiles of human and mouse samples

    Get PDF
    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities

    Gateways to the FANTOM5 promoter level mammalian expression atlas

    Get PDF
    The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0560-6) contains supplementary material, which is available to authorized users

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Petal Color Is Associated with Leaf Flavonoid Accumulation in a Labile Bicolor Flowering Dahlia (Dahlia variabilis) ‘Yuino’

    Get PDF
    Bicolor flowering dahlias generally produce inflorescences with bicolor petals characterized by a colored basal part and a white tip; however, they frequently produce single-colored petals. This petal color lability prevents uniform production of cut or pot flowers of bicolor dahlias and reduces the economic value of bicolor cultivars. In this study, to reveal the underlying mechanism and control color lability, the pattern of occurrence of single-colored petals was characterized in a red–white bicolor flowering cultivar ‘Yuino’. ‘Yuino’ produced inflorescences with bicolor petals, red petals, and both red and bicolor petals. Red petals occurred almost always at the outer whorls or sectorally in a mixed inflorescence, similar to a chimera or a lateral mutant. The occurrence of red petals was higher in field experiments during May to December than in greenhouse experiments during October to next July. We identified the “R-line” plant, which produced red petals with high frequency during the winter to spring cultivation; this characteristic to produce red petals with high frequency was retained through vegetative propagation. There were strong relationships between inflorescence color and leaf phenotype; red petal-producing plants accumulated flavonoids in leaves, whereas only bicolor petal-producing plants tended not to accumulate flavonoid in leaves. This suggests that petal color of ‘Yuino’ is associated with flavonoid synthetic potential in shoot. Therefore, a phenotypic difference is observed not only in petal colors but also at the whole plant level

    Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) ‘Yuino’

    Get PDF
    Main conclusion: Post-transcriptional gene silencing (PTGS) of a chalcone synthase ( DvCHS2 ) occurred in the white part of bicolor petals and flavonoid-poor leaves; however, it did not in red petals and flavonoid-rich leaves. Petal color lability is a prominent feature of bicolor dahlia cultivars, and causes plants to produce not only original bicolor petals with colored bases and pure white tips, but also frequently single-colored petals without white tips. In this study, we analysed the molecular mechanisms that are associated with petal color lability using the red-white bicolor cultivar ‘Yuino’. Red single-colored petals lose their white tips as a result of recover of flavonoid biosynthesis. Among flavonoid biosynthetic genes including four chalcone synthase (CHS)-like genes (DvCHS1, DvCHS2, DvCHS3, and DvCHS4), DvCHS1 and DvCHS2 had significantly lower expression levels in the white part of bicolor petals than in red petals, while DvCHS3, DvCHS4, and other flavonoid biosynthetic genes had almost the same expression levels. Small RNAs from the white part of a bicolor petal were mapped onto DvCHS1 and DvCHS2, while small RNAs from a red single-colored petal were not mapped onto any of the four CHS genes. A relationship between petal color and leaf flavonoid accumulation has previously been demonstrated, whereby red petal-producing plants accumulate flavonoids in their leaves, while bicolor petal-producing plants tend not to. The expression level of DvCHS2 was down-regulated in flavonoid-poor leaves and small RNAs from flavonoid-poor leaves were mapped onto DvCHS2, suggesting that the down-regulation of DvCHS2 in flavonoid-poor leaves occurs post-transcriptionally. Genomic analysis also suggested that DvCHS2 is the key gene involved in bicolor formation. Together, these results suggest that post-transcriptional gene silencing of DvCHS2 plays a key role in phenotypic lability in this bicolor dahlia

    Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo.

    Get PDF
    PurposeNonequilibrium atmospheric pressure plasma (NEAPP) therapy has recently been focused on as a novel medical practice. Using cells with acquired paclitaxel/cisplatin resistance, we elucidated effects of indirect NEAPP-activated medium (NEAPP-AM) exposure on cell viability and tumor growth in vitro and in vivo.MethodsUsing chronic paclitaxel/cisplatin-resistant ovarian cancer cells, we applied indirect NEAPP-exposed medium to cells and xenografted tumors in a mouse model. Furthermore, we examined the role of reactive oxygen species (ROS) or their scavengers in the above-mentioned EOC cells.ResultsWe assessed the viability of NOS2 and NOS3 cells exposed to NEAPP-AM, which was prepared beforehand by irradiation with NEAPP for the indicated time. In NOS2 cells, viability decreased by approximately 30% after NEAPP-AM 120-sec treatment (PConclusionWe demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo. Indirect plasma therapy is a promising treatment option for EOC and may contribute to a better patient prognosis in the future

    Chemo-sensitivity assay of parental and resistant cells.

    No full text
    <p><i>A, B</i>: Paclitaxel-sensitivity assay in resistant NOS2TR (A) and NOSCR cells (B) compared to parental NOS2 cells. <i>C, D</i>: Cisplatin-sensitivity assay in resistant NOS3TR (C) and NOS3CR cells (D) compared to parental NOS2 cells. Each point represents the mean, and the bars show SD. Data are representative of at least three independent experiments. *P<0.05, **P<0.01 versus parental cells.</p
    corecore