214 research outputs found

    Oxidation on the Nickel Hydroxide Electrode

    Get PDF
    It has been shown that in alkaline solution alcoholic hydroxyl is oxidized by the charged nickel hydroxide electrode - similarly as by oxidation in the presence of nickel salt catalysts or by »nickel peroxide« - to carboxylic acid. An electrochemical method has been devised for the study of the reaction rate, based on the potentiometric indication of the depletion of NiOOH. It has been shown that the reaction rate is proportional to the amount of NiOOH and the concentration of the alcohol, but independent of the hydroxide ion concentration and the electrode potential. An electrochemical procedure has been devised for the practical implementation of oxidation on NiOOH. In this way a number of primary alcohols may be oxidized with good yields. It has been shown that the oxidation of the vitamin C intermediate di-0-isopropylidene-sorbose can be performed electrochemically with yields above 950/o and, according to estimates, economically on an industrial scale

    Solar Wind Electron Interaction with the Dayside Lunar Surface and Crustal Magnetic Fields: Evidence for Precursor Effects

    Get PDF
    Electron distributions measured by Lunar Prospector above the dayside lunar surface in the solar wind often have an energy dependent loss cone, inconsistent with adiabatic magnetic reflection. Energy dependent reflection suggests the presence of downward parallel electric fields below the spacecraft, possibly indicating the presence of a standing electrostatic structure. Many electron distributions contain apparent low energy (<100 eV) upwardgoing conics (58% of the time) and beams (12% of the time), primarily in regions with non-zero crustal magnetic fields, implying the presence of parallel electric fields and/or wave-particle interactions below the spacecraft. Some, but not all, of the observed energy dependence comes from the energy gained during reflection from a moving obstacle; correctly characterizing electron reflection requires the use of the proper reference frame. Nonadiabatic reflection may also play a role, but cannot fully explain observations. In cases with upward-going beams, we observe partial isotropization of incoming solar wind electrons, possibly indicating streaming and/or whistler instabilities. The Moon may therefore influence solar wind plasma well upstream from its surface. Magnetic anomaly interactions and/or non-monotonic near surface potentials provide the most likely candidates to produce the observed precursor effects, which may help ensure quasi-neutrality upstream from the Moon

    Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Get PDF
    On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013

    Collisional Evolution of Irregular Satellite Swarms: Detectable Dust around Solar System and Extrasolar Planets

    Full text link
    Since the 1980's it has been becoming increasingly clear that the Solar System's irregular satellites are collisionally evolved. We derive a general model for the collisional evolution of an irregular satellite swarm and apply it to the Solar System and extrasolar planets. Our model reproduces the Solar System's complement of observed irregulars well, and suggests that the competition between grain-grain collisions and Poynting-Robertson (PR) drag helps set the fate of the dust. Because swarm collision rates decrease over time the main dust sink can change with time, and may help unravel the accretion history of synchronously rotating regular satellites that show brightness asymmetries. Some level of dust must be present on AU scales around the Solar System's giant planets, which we predict may be at detectable levels. We also predict whether dust produced by extrasolar circumplanetary swarms can be detected. The coronagraphic instruments on JWST will have the ability to detect the dust generated by these swarms, which are most detectable around planets that orbit at tens of AU from the youngest stars. Because the collisional decay of swarms is relatively insensitive to planet mass, swarms can be much brighter than their host planets and allow discovery of Neptune-mass planets that would otherwise remain invisible. This dust may have already been detected. The observations of the planet Fomalhaut b can be explained as scattered light from dust produced by the collisional decay of an irregular satellite swarm around a 10 Earth-mass planet. Such a swarm comprises about 5 Lunar masses worth of irregular satellites. Finally, we consider what happens if Fomalhaut b passes through Fomalhaut's main debris ring, which allows the circumplanetary swarm to be replenished through collisions with ring planetesimals. (abridged)Comment: accepted to MNRA

    LADEE Science Results and Implications for Exploration

    Get PDF
    NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results

    Toxicity of lunar dust

    Full text link
    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust properties will be required to provide ground truth for ground-based studies quantifying the toxicity of dust exposure and the associated health risks during future manned lunar missions.Comment: 62 pages, 9 figures, 2 tables, accepted for publication in Planetary and Space Scienc

    Detection of a strongly negative surface potential at Saturn's moon Hyperion

    Get PDF
    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (~ −200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator

    Paradoxical alteration of acute-phase protein levels in patients with chronic hepatitis C treated with IFN-alpha 2b

    Get PDF
    Previously we observed elevation of the serum concentration of two acute-phase protein (AFP) complement components (C9 and C1-inhibitor) in patients with chronic hepatitis C who responded (R) to IFN-alpha therapy, but not in non-responders (NR). In the present study we investigated the effect of high-dose IFN-alpha therapy on serum concentrations of two positive [orosomucoid (OROSO) and C-reactive protein (CRP)] and two negative [transferrin (TF) and fetuin/alpha2HS-glycoprotein (AHSG)] AFP in an outpatient setting. We investigated blood samples of 40 patients with chronic hepatitis C at the onset and at the end of a 3-month treatment with high-dose IFN-alpha2b (5 MIU/day for 6 weeks, followed by 5 MIU t.i.w.) and of 52 healthy individuals. Serum concentrations of OROSO, TF and AHSG were measured by radial immunodiffusion; CRP levels were determined by immunotubridimetry. Compared to controls, patients with chronic hepatitis C had significantly lower OROSO and CRP, and higher AHSG levels. By the end of treatment, OROSO concentration increased in R (P = 0.0054), but not in NR patients. In contrast, TF levels decreased in R (P = 0.0040), but did not change in NR patients. Similarly, in R patients, AHSG levels tended to decrease (P = 0.0942) following IFN-alpha treatment. We conclude that the acute-phase reaction is suppressed in patients with chronic hepatitis C that may be potentially related to the responsiveness to IFN-alpha therapy

    Synergies between interstellar dust and heliospheric science with an interstellar probe

    Get PDF
    We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavours, and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an interstellar probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute – through measuring dust – to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it ‘rolls’ into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions

    Heterologous Expression and Maturation of an NADP-Dependent [NiFe]-Hydrogenase: A Key Enzyme in Biofuel Production

    Get PDF
    Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins
    corecore