198 research outputs found
Supporting carers to manage pain medication in cancer patients at the end of life: A feasibility trial
Background:
Carers of people with advanced cancer play a significant role in managing pain medication, yet they report insufficient information and support to do so confidently and competently. There is limited research evidence on the best ways for clinicians to help carers with medication management.
Aims:
To develop a pain medicines management intervention (Cancer Carers Medicines Management) for cancer patients’ carers near the end of life and evaluate feasibility and acceptability to nurses and carers. To test the feasibility of trial research procedures and to inform decisions concerning a full-scale randomised controlled trial.
Design:
Phase I-II clinical trial. A systematic, evidence-informed participatory method was used to develop CCMM: a nurse-delivered structured conversational process. A two-arm, cluster randomised controlled feasibility trial of Cancer Carers Medicines Management was conducted, with an embedded qualitative study to evaluate participants’ experiences of Cancer Carers Medicines Management and trial procedures.
Setting:
Community settings in two study sites.
Participants:
Phase I comprises 57 carers, patients and healthcare professionals and Phase II comprises 12 nurses and 15 carers.
Results:
A novel intervention was developed. Nurses were recruited and randomised. Carer recruitment to the trial was problematic with fewer than predicted eligible participants, and nurses judged a high proportion unsuitable to recruit into the study. Attrition rates following recruitment were typical for the study population. Cancer Carers Medicines Management was acceptable to carers and nurses who took part, and some benefits were identified.
Conclusion:
Cancer Carers Medicines Management is a robustly developed medicines management intervention which merits further research to test its effectiveness to improve carers’ management of pain medicines with patients at the end of life. The study highlighted aspects of trial design that need to be considered in future research
Blue carbon stock of the Bangladesh Sundarban mangroves: what could be the scenario after a century?
The total blue carbon stock of the Bangladesh Sundarban mangroves was evaluated and the probable future status after a century was predicted based on the recent trend of changes in the last 30 years and implementing a hybrid model of Markov Chain and Cellular automata. At present 36.24 Tg C and 54.95 Tg C are stored in the above-ground and below-ground compartments respectively resulting in total blue carbon stock of 91.19 Tg C. According to the prediction 15.88 Tg C would be lost from this region by the year 2115. The low saline species composition classes dominated mainly by Heritiera spp. accounts for the major portion of the carbon sock at present (45.60 Tg C), while the highly saline regions stores only 14.90 Tg C. The prediction shows that after a hundred years almost 22.42 Tg C would be lost from the low saline regions accompanied by an increase of 8.20 Tg C in the high saline regions dominated mainly by Excoecaria sp. and Avicennia spp. The net carbon loss would be due to both mangrove area loss (~ 510 km2) and change in species composition leading to 58.28 Tg of potential CO2 emission within the year 2115
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Angiotensin-converting enzyme genotype and late respiratory complications of mustard gas exposure
<p>Abstract</p> <p>Background</p> <p>Exposure to mustard gas frequently results in long-term respiratory complications. However the factors which drive the development and progression of these complications remain unclear. The Renin Angiotensin System (RAS) has been implicated in lung inflammatory and fibrotic responses. Genetic variation within the gene coding for the Angiotensin Converting Enzyme (ACE), specifically the Insertion/Deletion polymorphism (I/D), is associated with variable levels of ACE and with the severity of several acute and chronic respiratory diseases. We hypothesized that the ACE genotype might influence the severity of late respiratory complications of mustard gas exposure.</p> <p>Methods</p> <p>208 Kurdish patients who had suffered high exposure to mustard gas, as defined by cutaneous lesions at initial assessment, in Sardasht, Iran on June 29 1987, underwent clinical examination, spirometric evaluation and ACE Insertion/Deletion genotyping in September 2005.</p> <p>Results</p> <p>ACE genotype was determined in 207 subjects. As a continuous variable, FEV<sub>1 </sub>% predicted tended to be higher in association with the D allele 68.03 ± 20.5%, 69.4 ± 21.4% and 74.8 ± 20.1% for II, ID and DD genotypes respectively. Median FEV<sub>1 </sub>% predicted was 73 and this was taken as a cut off between groups defined as having better or worse lung function. The ACE DD genotype was overrepresented in the better spirometry group (Chi<sup>2 </sup>4.9 p = 0.03). Increasing age at the time of exposure was associated with reduced FEV<sub>1 </sub>%predicted (p = 0.001), whereas gender was not (p = 0.43).</p> <p>Conclusion</p> <p>The ACE D allele is associated with higher FEV<sub>1 </sub>% predicted when assessed 18 years after high exposure to mustard gas.</p
The changing carbon cycle of the coastal ocean
The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget
The processing and impact of dissolved riverine nitrogen in the Arctic Ocean
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP-
0229302 and NSF-OPP-0732985.Support to SET was additionally
provided by an NSERC Postdoctoral Fellowship
Microbial community composition in sediments resists perturbation by nutrient enrichment
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1540–1548, doi:10.1038/ismej.2011.22.Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.Funding for this research came from NSF(DEB-0717155 to JEH, DBI-0400819 to JLB). Support for the sequencing facility came from NIH and NSF (NIH/NIEHS-P50-ES012742-01 and NSF/OCE 0430724-J Stegeman PI to HGM and MLS, and WM Keck Foundation to MLS). Salary support provided from Princeton University Council on Science and Technology to JLB. Support for development of the functional gene microarray provided by NSF/OCE99-081482 to BBW. The Plum Island fertilization experiment was funded by NSF (DEB 0213767 and DEB 0816963)
Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea
Blue Carbon Stock of the Bangladesh Sundarban Mangroves: What could Be the Scenario after a Century?
- …
