22 research outputs found

    A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts.

    Get PDF
    Next-generation sequencing (NGS) can identify and validate new biomarkers of cancer onset, progression and therapy resistance. Substantial archives of formalin-fixed, paraffin-embedded (FFPE) cancer samples from patients represent a rich resource for linking molecular signatures to clinical data. However, performing NGS on FFPE samples is limited by poor RNA purification methods. To address this hurdle, we developed an improved methodology for extracting high-quality RNA from FFPE samples. By briefly integrating a newly-designed micro-homogenizing (mH) tool with commercially available FFPE RNA extraction protocols, RNA recovery is increased by approximately 3-fold while maintaining standard A260/A280 ratios and RNA quality index (RQI) values. Furthermore, we demonstrate that the mH-purified FFPE RNAs are longer and of higher integrity. Previous studies have suggested that pancreatic ductal adenocarcinoma (PDAC) gene expression signatures vary significantly under in vitro versus in vivo and in vivo subcutaneous versus orthotopic conditions. By using our improved mH-based method, we were able to preserve established expression patterns of KRas-dependency genes within these three unique microenvironments. Finally, expression analysis of novel biomarkers in KRas mutant PDAC samples revealed that PEAK1 decreases and MST1R increases by over 100-fold in orthotopic versus subcutaneous microenvironments. Interestingly, however, only PEAK1 levels remain elevated in orthotopically grown KRas wild-type PDAC cells. These results demonstrate the critical nature of the orthotopic tumor microenvironment when evaluating the clinical relevance of new biomarkers in cells or patient-derived samples. Furthermore, this new mH-based FFPE RNA extraction method has the potential to enhance and expand future FFPE-RNA-NGS cancer biomarker studies

    The intronic BRCA1 c.5407-25T>A variant causing partly skipping of exon 23—a likely pathogenic variant with reduced penetrance?

    Get PDF
    Rare sequence variants in the non-coding part of the BRCA genes are often reported as variants of uncertain significance (VUS), which leave patients and doctors in a challenging position. The aim of this study was to determine the pathogenicity of the BRCA1 c.5407-25T>A variant found in 20 families from Norway, France and United States with suspected hereditary breast and ovarian cancer. This was done by combining clinical and family information with allele frequency data, and assessment of the variant’s effect on mRNA splicing. Mean age at breast (n = 12) and ovarian (n = 11) cancer diagnosis in female carriers was 49.9 and 60.4 years, respectively. The mean Manchester score in the 20 families was 16.4. The allele frequency of BRCA1 c.5407-25T>A was 1/64,566 in non-Finnish Europeans (gnomAD database v2.1.1). We found the variant in 1/400 anonymous Norwegian blood donors and 0/784 in-house exomes. Sequencing of patient-derived cDNA from blood, normal breast and ovarian tissue showed that BRCA1 c.5407-25T>A leads to skipping of exon 23, resulting in frameshift and protein truncation: p.(Gly1803GlnfsTer11). Western blot analysis of transiently expressed BRCA1 proteins in HeLa cells showed a reduced amount of the truncated protein compared with wild type. Noteworthily, we found that a small amount of full-length transcript was also generated from the c.5407-25T>A allele, potentially explaining the intermediate cancer burden in families carrying this variant. In summary, our results show that BRCA1 c.5407-25T>A leads to partial skipping of exon 23, and could represent a likely pathogenic variant with reduced penetrance.publishedVersio

    The intronic BRCA1 c.5407-25T>A variant causing partly skipping of exon 23—a likely pathogenic variant with reduced penetrance?

    No full text
    Rare sequence variants in the non-coding part of the BRCA genes are often reported as variants of uncertain significance (VUS), which leave patients and doctors in a challenging position. The aim of this study was to determine the pathogenicity of the BRCA1 c.5407-25T>A variant found in 20 families from Norway, France and United States with suspected hereditary breast and ovarian cancer. This was done by combining clinical and family information with allele frequency data, and assessment of the variant’s effect on mRNA splicing. Mean age at breast (n = 12) and ovarian (n = 11) cancer diagnosis in female carriers was 49.9 and 60.4 years, respectively. The mean Manchester score in the 20 families was 16.4. The allele frequency of BRCA1 c.5407-25T>A was 1/64,566 in non-Finnish Europeans (gnomAD database v2.1.1). We found the variant in 1/400 anonymous Norwegian blood donors and 0/784 in-house exomes. Sequencing of patient-derived cDNA from blood, normal breast and ovarian tissue showed that BRCA1 c.5407-25T>A leads to skipping of exon 23, resulting in frameshift and protein truncation: p.(Gly1803GlnfsTer11). Western blot analysis of transiently expressed BRCA1 proteins in HeLa cells showed a reduced amount of the truncated protein compared with wild type. Noteworthily, we found that a small amount of full-length transcript was also generated from the c.5407-25T>A allele, potentially explaining the intermediate cancer burden in families carrying this variant. In summary, our results show that BRCA1 c.5407-25T>A leads to partial skipping of exon 23, and could represent a likely pathogenic variant with reduced penetrance

    RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention

    Get PDF
    A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy

    Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models

    No full text
    We have compared simulations of anthropogenic CO2_2 in the four threedimensional ocean models that participated in the first phase of the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP), as a means to identify their major differences.Simulated global uptake agrees to within ±\pm19%, giving a range of 1.85±\pm0.35 PgC yr1^{-1} for the 1980-1989 average. Regionally, the Southern Ocean dominates the present-day air-sea flux of anthropogenic CO2_2 in all models, with one third to one half of the global uptake occurring south of 30°S. The highest simulated total uptake in the Southern Ocean was 70% larger than the lowest. Comparison with recent data-based estimates of anthropogenic CO2_2 suggesthat most of the models substantially overestimate storage in the Southern Ocean; elsewhere they generally underestimate storage by less than 20%. Globally, the OCMIP models appear to bracket the real ocean's present uptake, based on comparison of regional data-basedstimates of anthropogenic CO2_2 and bomb 14^{14}C. Column inventories of bomb 14^{14}C have become more similar to those for anthropogenic CO2_2 with the time that has elapsed between the Geochemical Ocean Sections Study (1970s) and Word Ocean Circulation Experiment (1990s) global sampling campaigns. Our ability to evaluate simulated anthropogenic CO2_2 would improve if systematic errors associated with the data-based estimates could be provided regionally
    corecore