26 research outputs found

    Developing a research strategy to better understand, observe, and simulate urban atmospheric processes at kilometer to subkilometer scales

    Get PDF
    A Met Office/Natural Environment Research Council Joint Weather and Climate Research Programme workshop brought together 50 key international scientists from the UK and international community to formulate the key requirements for an Urban Meteorological Research strategy. The workshop was jointly organised by University of Reading and the Met Office

    Exploring urban metabolism—Towards an interdisciplinary perspective

    Get PDF
    © 2017 The Author(s) The discussion on urban metabolism has been long dominated by natural scientists focussing on natural forces shaping the energy and material flows in urban systems. However, in the anthropocene human forces such as industrialization and urbanization are mobilizing people, goods and information at an increasing pace and as such have a large impact on urban energy and material flows. In this white paper, we develop a combined natural and social science perspective on urban metabolism. More specifically, innovative conceptual and methodological interdisciplinary approaches are identified and discussed to enhance the understanding of the forces that shape urban metabolism, and how these forces affect urban living and the environment. A challenging research agenda on urban metabolism is also presented

    Turbulent Prandtl number and characteristic length scales in stably stratified flows: steady-state analytical solutions

    No full text
    In this study, the stability dependence of turbulent Prandtl number (Prt) is quantified via a novel and simple analytical approach. Based on the variance and flux budget equations, a hybrid length scale formulation is first proposed and its functional relationships to well-known length scales are established. Next, the ratios of these length scales are utilized to derive an explicit relationship between Prt and gradient Richardson number. In addition, theoretical predictions are made for several key turbulence variables (e.g., dissipation rates, normalized fluxes). The results from our proposed approach are compared against other competing formulations as well as published datasets. Overall, the agreement between the different approaches is rather good despite their different theoretical foundations and assumptions.Atmospheric Remote Sensin

    Revisiting and revising Tatarskii’s formulation for the temperature structure parameter (CT2) in atmospheric flows

    No full text
    In this paper, we revisit a well-known formulation of temperature structure parameter (CT2), originally proposed by V. I. Tatarskii. We point out its limitations and propose a revised formulation based on turbulence variance and flux budget equations. Our formulation includes a novel physically-based outer length scale which can be estimated from routine meteorological data.Atmospheric Remote Sensin

    Analysis of urban rainfall from hourly to seasonal scales using high-resolution radar observations in the Netherlands

    No full text
    In this article an analysis of urban rainfall from hourly to seasonal scales is conducted for the Netherlands, with a focus on its capital, Amsterdam. In addition, the potential of synoptic weather types and local wind directions to categorize extreme rainfall in Amsterdam is assessed. An analysis of gauge-adjusted daily radar rainfall retrievals with 1 km spatial resolution for 10 years shows that rainfall is enhanced over Dutch cities compared to their rural surroundings, with a maximum of a 14.2% increase over the largest cities in winter. The annual cumulative rainfall in Amsterdam appears to be significantly higher compared to its surroundings. This is due both to the higher frequency of occurrence of urban rainfall and to the higher hourly mean intensities. Extreme hourly rainfall rates appear to be affected by urban areas only in summer. Diurnal and weekly rainfall cycles do not reveal any significant urban influence. A wind direction analysis reveals that extreme rainfall events can primarily be attributed to westerly and next to southerly air masses. An analysis of the Jenkinson and Collinson (JC) and the German Weather Service (Deutscher Wetterdienst, DWD) weather types with rainfall and extreme rainfall events reveals that the JC weather types are more indicative of situations associated with rainfall extremes, whereas the DWD weather types are more indicative of situations resulting in higher accumulated rainfall amounts.</p

    Quantifying the effect of different urban planning strategies on heat stress for current and future climates in the agglomeration of The Hague (The Netherlands)

    No full text
    In the Netherlands, there will be an urgent need for additional housing by the year 2040, which mainly has to be realized within the existing built environment rather than in the spatial extension of cities. In this data-driven study, we investigated the effects of different urban planning strategies on heat stress for the current climate and future climate scenarios (year 2050) for the urban agglomeration of The Hague. Heat stress is here expressed as the number of days exceeding minimum temperatures of 20 °C in a year. Thereto, we applied a diagnostic equation to determine the daily maximum urban heat island based on routine meteorological observations and straightforward urban morphological properties including the sky-view factor and the vegetation fraction. Moreover, we utilized the Royal Netherlands Meteorological Institute's (KNMI) climate scenarios to transform present-day meteorological hourly time series into the future time series. The urban planning strategies differ in replacing low- and mid-rise buildings with high-rise buildings (which reduces the sky-view factor), and constructing buildings on green areas (which reduces the vegetation fraction). We found that, in most cases, the vegetation fraction is a more critical parameter than the sky-view factor to minimize the extra heat stress incurred when densifying the neighbourhood. This means that an urban planning strategy consisting of high-rise buildings and preserved green areas is often the best solution. Still, climate change will have a larger impact on heat stress for the year 2050 than the imposed urban densification.</p

    Evaluation of three mainstream numerical weather prediction models with observations from meteorological mast IJmuiden at the North Sea

    No full text
    Numerical weather prediction models play an important role in the field of wind energy, for example, in power forecasting, resource assessment, wind farm (wake) simulations, and load assessment. Continuous evaluation of their performance is crucial for successful operations and further understanding of meteorology for wind energy purposes. However, extensive offshore observations are rarely available. In this paper, we use unique met mast and Lidar observations up to 315 m from met mast “IJmuiden,” located in the North Sea 85 km off the Dutch coast, to evaluate the representation of wind and other relevant variables in three mainstream meteorological models: ECMWF-IFS, HARMONIE-AROME, and WRF-ARW, for a wide range of weather conditions. Overall performance for hub-height wind speed is found to be comparable between the models, with a systematic wind speed bias <0.5 m/s and random wind speed errors (centered RMSE) <2 m/s. However, the model performance differs considerably between cases, with better performance for strong wind regimes and well-mixed wind and potential temperature profiles. Conditions characterized by moderate wind speeds combined with stable stratification, which typically produce substantial wind shear and power fluctuations, lead to the largest misrepresentations in all models.</p

    A diagnostic equation for the maximum urban heat island effect of a typical Chinese city: A case study for Xi'an

    No full text
    To reduce the vulnerability of urban areas facing high temperatures, it is useful to develop methods to obtain the urban heat island (UHI)intensity. However, it is hard to equip all cities with extensive measurement networks and alternative UHI diagnostic methods are needed. Accordingly, in this paper we evaluate and revise the diagnostic equation designed by Theeuwes et al. (2017)and analyze its application for Xi'an (China), based on long-term summer meteorology data. The evaluation of the default diagnostic equation shows that limited accuracy for Xi'an is caused by the sum of morphological parameters being used outside the original range of calibration. Subsequently, we propose an extended equation, which adds the building fraction to express the morphology of additional spatial categories. This new equation is calibrated against a 3-year dataset and independently validated with data from another year. In addition, a class prediction with three spatial categories is proposed, and verified by independent data of 20 stations in Xi'an in 2018, which enables this formula to be applied in more cities. Altogether, the extended diagnostic equation is an effective method to evaluate the daily maximum UHI intensity (UHI max )on neighborhood-scale, which can be generalized for a whole city area and presents internal intensity differences with multi-points. </p
    corecore