9 research outputs found

    Neutron activation analysis and X-ray Rayleigh and Raman scattering of hair and nail clippings as noninvasive bioindicators for Cu liver status in Labrador Retrievers

    Get PDF
    The heritability of chronic hepatitis in the Labrador Retriever is studied with the aim of identifying the related gene mutation. Identification of cases and controls is largely based on instrumental neutron activation analysis (INAA) Cu determination in liver biopsies. The burden for these companion animals may be reduced if nail clippings and hair (fur) could serve as a noninvasive indicator for the hepatic Cu concentrations. No correlation was found between hepatic Cu concentrations and Cu concentrations in hair and nail samples. However, hair and nail samples were also analyzed by X-ray tube excitation, taking advantage of the X-ray Compton, Rayleigh, and Raman scattering which reflects the organic components such as the type of melanin. Principal component analysis provided first indications that some differentiation between healthy and sick dogs could indeed be obtained from hair and nail analysis

    Detection of Helicobacter pylori in bile of cats

    Get PDF
    Lymphocytic cholangitis (LC) in cats is a biliary disease of unknown etiology. Helicobacter spp. were recently implicated in human primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Because of the similarities between PSC/PBC with LC, we hypothesized that Helicobacter spp. are involved in feline LC. A PCR with Helicobacter genus-specific 16S rRNA primers was performed on DNA isolated from feline bile samples. Four of the 15 (26%) LC samples were positive, whereas only 8/51 (16%) of non-LC samples were PCR positive (p=0.44). Sequence analysis of the amplicons revealed a 100% identity with the Helicobacter pylori specific DNA fragments. Our data suggest an etiological role of H. pylori in feline LC and that cats are a potential zoonotic reservoir

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Neue Erkenntnisse über phytopathogene Bakterien und die von ihnen verursachten Krankheiten.

    No full text

    Patterns of Resistance-Associated Substitutions in Patients With Chronic HCV Infection Following Treatment With Direct-Acting Antivirals

    No full text
    corecore