273 research outputs found

    Enhancing Vitality in Academic Medicine: Faculty Development and Productivity

    Get PDF
    The prevalence of low satisfaction and increased stress among faculty in academic medicine makes understanding facuity vitality in this field more important than ever before. To explore the contributors to and outcomes of faculty vitality, we conducted a multi-institutional study of faculty in academic medicine (N = 1,980, 42 percent response rate). Faculty were surveyed about climate and leadership, career and life management, satisfaction, engagement, productivity, and involvement in faculty development. Analysis reveals that controlling for other factors, academic medicine faculty who participate regularly in facuity development activ ities are significantly more satisfied, engaged, and productive

    Abrupt Holocene ice loss due to thinning and ungrounding in the Weddell Sea Embayment

    Get PDF
    The extent of grounded ice and buttressing by the Ronne Ice Shelf, which provides resistance to the outflow of ice streams, moderate West Antarctic Ice Sheet stability. During the Last Glacial Maximum, the ice sheet advanced and was grounded near the Weddell Sea continental shelf break. The timing of subsequent ice sheet retreat and the relative roles of ice shelf buttressing and grounding line changes remain unresolved. Here we use an ice core record from grounded ice at Skytrain Ice Rise to constrain the timing and speed of early Holocene ice sheet retreat. Measured ÎŽ18O and total air content suggest that the surface elevation of Skytrain Ice Rise decreased by about 450 m between 8.2 and 8.0 kyr before 1950 CE (±0.13 kyr). We attribute this elevation change to dynamic thinning due to flow changes induced by the ungrounding of ice in the area. Ice core sodium concentrations suggest that the ice front of this ungrounded ice shelf then retreated about 270 km (±30 km) from 7.7 to 7.3 kyr before 1950 CE. These centennial-scale changes demonstrate how quickly ice mass can be lost from the West Antarctic Ice Sheet due to changes in grounded ice without extensive ice shelf calving. Our findings both support and temporally constrain ice sheet models that exhibit rapid ice loss in the Weddell Sea sector in the early Holocene

    Structural Requirements for Dihydrobenzoxazepinone Anthelmintics:Actions against Medically Important and Model Parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni

    Get PDF
    Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure–activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics

    SUCLG2 identified as both a determinator of CSF AÎČ1-42 levels and an attenuator of cognitive decline in Alzheimer's disease

    Get PDF
    Cerebrospinal fluid amyloid-beta 1-42 (AÎČ1-42) and phosphorylated Tau at position 181 (pTau181) are biomarkers of Alzheimer's disease (AD). We performed an analysis and meta-analysis of genome-wide association study data on AÎČ1-42 and pTau181 in AD dementia patients followed by independent replication. An association was found between AÎČ1-42 level and a single-nucleotide polymorphism in SUCLG2 (rs62256378) (P = 2.5×10−12). An interaction between APOE genotype and rs62256378 was detected (P = 9.5 × 10−5), with the strongest effect being observed in APOE-Δ4 noncarriers. Clinically, rs62256378 was associated with rate of cognitive decline in AD dementia patients (P = 3.1 × 10−3). Functional microglia experiments showed that SUCLG2 was involved in clearance of AÎČ1-4

    When does atopic dermatitis warrant systemic therapy? Recommendations from an expert panel of the International Eczema Council

    Get PDF
    BackgroundAlthough most patients with atopic dermatitis (AD) are effectively managed with topical medication, a significant minority require systemic therapy. Guidelines for decision making about advancement to systemic therapy are lacking.ObjectiveTo guide those considering use of systemic therapy in AD and provide a framework for evaluation before making this therapeutic decision with the patient.MethodsA subgroup of the International Eczema Council determined aspects to consider before prescribing systemic therapy. Topics were assigned to expert reviewers who performed a topic-specific literature review, referred to guidelines when available, and provided interpretation and expert opinion.ResultsWe recommend a systematic and holistic approach to assess patients with severe signs and symptoms of AD and impact on quality of life before systemic therapy. Steps taken before commencing systemic therapy include considering alternate or concomitant diagnoses, avoiding trigger factors, optimizing topical therapy, ensuring adequate patient/caregiver education, treating coexistent infection, assessing the impact on quality of life, and considering phototherapy.LimitationsOur work is a consensus statement, not a systematic review.ConclusionThe decision to start systemic medication should include assessment of severity and quality of life while considering the individual's general health status, psychologic needs, and personal attitudes toward systemic therapies

    Saving the world’s terrestrial megafauna

    Get PDF
    From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the world’s largest carnivores (≄ 15 kg, n = 27) and 60% of the world’s largest herbivores (≄ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the world’s most iconic animals—such as gorillas, rhinos, and big cats (figure 2 top row)—and, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them

    The Marine Viromes of Four Oceanic Regions

    Get PDF
    Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earth's oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure
    • 

    corecore