32 research outputs found

    Sperm induce a secondary increase in ATP levels in mouse eggs that is independent of Ca2+ oscillations

    Get PDF
    Egg activation at fertilization in mouse eggs is caused by a series of cytosolic Ca2+ oscillations that are associated with an increase in ATP concentrations driven by increased mitochondrial activity. We have investigated the role of Ca2+ oscillations in these changes in ATP at fertilization by measuring the dynamics of ATP and Ca2+ in mouse eggs. An initial ATP increase started with the first Ca2+ transient at fertilization and then a secondary increase in ATP occurred about 1 hour later and this preceded a small and temporary increase in the frequency of Ca2+ oscillations. Other stimuli that caused Ca2+ oscillations such as PLCz1 or thimerosal, caused smaller or slower changes in ATP that failed to show the distinct secondary rise. Sperm induced Ca2+ oscillations in the egg also triggered changes in fluorescence of NADH which followed the pattern of Ca2+ spikes in a similar pattern to oscillations triggered by PLCz1 or thimerosal. When eggs were loaded with low concentrations of the Ca2+ chelator BAPTA, sperm triggered one small Ca2+ increase, but there were still extra phases of ATP increase that were similar to control fertilized eggs. Singular Ca2+ increases caused by thapsigargin were much less effective in elevating ATP levels. Together these data suggest that the secondary ATP increase at fertilization in mouse eggs is not caused by increases in cytosolic Ca2+. The fertilizing sperm may stimulate ATP production in eggs via both Ca2+ and by another mechanism that is independent of PLCz1 or Ca2+ oscillations

    The lung microbiota in children with cystic fibrosis captured by induced sputum sampling

    Get PDF
    Background Spatial topography of the cystic fibrosis (CF) lung microbiota is poorly understood in childhood. How best to sample the respiratory tract in children for microbiota analysis, and the utility of microbiota profiling in clinical management of early infection remains unclear. By comparison with bronchoalveolar lavage (BAL), we assessed the ability of induced sputum (IS) sampling to characterise the lower airway microbiota. Methods Sample sets from IS and two or three matched BAL compartments were obtained for microbiota analysis as part of the CF-Sputum Induction Trial (UKCRN_14615, ISRCTNR_12473810). Microbiota profiles and pathogen detection were compared between matched samples. Results Twenty-eight patients, aged 1.1–17.7 years, provided 30 sample sets. Within-patient BAL comparisons revealed spatial heterogeneity in 8/30 (27%) sample sets indicating that the lower airway microbiota from BAL is frequently compartmentalised in children with CF. IS samples closely resembled one or more matched BAL compartments in 15/30 (50%) sets, and were related in composition in a further 9/30 (30%). IS detected 86.2% of the Top 5 genera found across matched BAL samples. The sensitivity of IS to detect specific CF-pathogens identified in matched BAL samples at relative abundance ≥5% varied between 43 and 100%, with negative predictive values between 73 and 100%. Conclusions Spatial heterogeneity of the lower airway microbiota was observed in BAL samples and presents difficulties for consistent lung sampling. IS captured a microbiota signature representative of the lower airway in 80% of cases, and is a straightforward, non-invasive intervention that can be performed frequently to aid pathogen diagnosis and understand microbiota evolution in children with CF

    Drosophila TET acts with PRC1 to activate gene expression independently of its catalytic activity

    Get PDF
    Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS

    Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction

    Get PDF
    Aging is characterized by a chronic low-grade inflammation known as inflammaging in multiple tissues, representing a risk factor for age-related diseases. Dietary restriction (DR) is the best-known non-invasive method to ameliorate aging in many organisms. However, the molecular mechanism and the signaling pathways that drive inflammaging across different tissues and how they are modulated by DR are not yet understood. Here we identify a multi-tissue gene network regulating inflammaging. This network is characterized by chromatin opening and upregulation in the transcription of innate immune system receptors and by activation of interferon signaling through interferon regulatory factors, inflammatory cytokines, and Stat1-mediated transcription. DR ameliorates aging-induced alterations of chromatin accessibility and RNA transcription of the inflammaging gene network while failing to rescue those alterations on the rest of the genome. Our results present a comprehensive understanding of the molecular network regulating inflammation in aging and DR and provide anti-inflammaging therapeutic targets

    VarLOCK: sequencing-independent, rapid detection of SARS-CoV-2 variants of concern for point-of-care testing, qPCR pipelines and national wastewater surveillance

    Get PDF
    The COVID-19 pandemic demonstrated the need for rapid molecular diagnostics. Vaccination programs can provide protection and facilitate the opening of society, but newly emergent and existing viral variants capable of evading the immune system endanger their efficacy. Effective surveillance for Variants of Concern (VOC) is therefore important. Rapid and specific molecular diagnostics can provide speed and coverage advantages compared to genomic sequencing alone, benefitting the public health response and facilitating VOC containment. Here we expand the recently developed SARS-CoV-2 CRISPR-Cas detection technology (SHERLOCK) to provide rapid and sensitive discrimination of SARS-CoV-2 VOCs that can be used at point of care, implemented in the pipelines of small or large testing facilities, and even determine the proportion of VOCs in pooled population-level wastewater samples. This technology complements sequencing efforts to allow facile and rapid identification of individuals infected with VOCs to help break infection chains. We show the optimisation of our VarLOCK assays (Variant-specific SHERLOCK) for multiple specific mutations in the S gene of SARS-CoV-2 and validation with samples from the Cardiff University Testing Service. We also show the applicability of VarLOCK to national wastewater surveillance of SARS-CoV-2 variants and the rapid adaptability of the technique for new and emerging VOCs

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    The fungal diversity in the lungs of children with cystic fibrosis captured by sputum-induction and bronchoalveolar lavage

    No full text
    Background: The prevalence of fungi in cystic fibrosis (CF) lung infections is poorly understood and studies have focused on adult patients. We investigated the fungal diversity in children with CF using bronchoalveolar lavage (BAL) and induced sputum (IS) samples to capture multiple lung niches. Methods: Sequencing of the fungal ITS2 region and molecular mycobiota diversity analysis was performed on 25 matched sets of BAL-IS samples from 23 children collected as part of the CF-SpIT study (UKCRN14615; ISRCTNR12473810). Results: Aspergillus and Candida were detected in all samples and were the most abundant and prevalent genera, followed by Dipodascus, Lecanicillium and Simplicillium. The presumptive CF pathogens Exophiala, Lomentospora and Scedosporium were identified at variable abundances in 100%, 64%, and 24% of sample sets, respectively. Fungal pathogens observed at high relative abundance (≥40%) were not accurately diagnosed by routine culture microbiology in over 50% of the cohort. The fungal communities captured by BAL and IS samples were similar in diversity and composition, with exception to C. albicans being significantly increased in IS samples. The respiratory mycobiota varied greatly between individuals, with only 13 of 25 sample sets containing a dominant fungal taxon. In 11/25 BAL sample sets, airway compartmentalisation was observed with diverse mycobiota detected from different lobes of the lung. Conclusions: The paediatric mycobiota is diverse, complex and inadequately diagnosed by conventional microbiology. Overlapping fungal communities were identified in BAL and IS samples, showing that IS can capture fungal genera associated with the lower airway. Compartmentalisation of the lower airway presents difficulties for consistent mycobiota sampling
    corecore