25 research outputs found

    A judicialização dos direitos sociais e os limites ao ativismo judicial no âmbito da jurisdição constitucional

    Get PDF
    O ativismo judicial se fortaleceu e tornou-se uma linha de atuação defendida por muitos membros do Poder Judiciário. É notório que o advento da Constituição Federal de 1988 bem como a constitucionalização das relações sociais e do Direito influenciaram este fortalecimento. Além disso, a omissão da Administração Pública em efetivar direitos protegidos constitucionalmente impulsiona a disseminação dessa linha ativista de atuação judicial, que encontra na jurisdição constitucional seu espaço ideal de crescimento. É função do Poder Judiciário, em geral, proteger a Constituição Federal bem como resguardar os princípios fundamentais do Estado Democrático de Direito. Apesar de possuir respaldo legal e legitimidade democrática para atuar nessa linha ativista, o Judiciário e seus membros possuem suas decisões limitadas pelo ordenamento jurídico vigente visando impedir a caracterização de uma hegemonia judicial. Este artigo, desta forma, visa discorrer sobre a atuação do Poder Judiciário face à omissão dos poderes Legislativo e Executivo, muitas vezes verificada na sociedade brasileira moderna. Tal atuação defendida por alguns autores e criticada por outros passou a ser mais frequente após a promulgação da Constituição Federal de 1988, dando maior ênfase à presença do Ativismo Judicial no Brasil. Tal fenômeno que, de certa forma, é uma vertente da Judicialização da Política, consiste em uma maior atividade do Poder Judiciário em questões políticas sociais a fim de garantir, principalmente o acesso aos direitos fundamentais a uma parcela mais carente da população

    Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes

    Get PDF
    The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain

    Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors

    Get PDF
    Biomagnetic nano and microparticles platforms have attracted considerable interest in the field of biological sensors due to their interesting physico-chemical properties, high specific surface area, good mechanical stability and opportunities for generating magneto-switchable devices. This review discusses recent advances in the development and characterization of active biomagnetic nanoassemblies, their interaction with biological molecules and their use in bioanalytical sensors

    Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2

    Get PDF
    Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involvedSupplementary Information: Supplementary Data 1; Supplementary Data 2; Reporting Summary.NHMRC; Women’s and Children’s Hospital Research Foundation; Muir Maxwell Trust; Epilepsy Society; The European Fund for Regional Development; The province of Friesland, Dystonia Medical Research Foundation; Stichting Wetenschapsfonds Dystonie Vereniging; Fonds Psychische Gezondheid; Phelps Stichting; The Italian Ministry of Health; Istituto Superiore di Sanità, Italy; Undiagnosed Disease Network Italy; The Fondation maladies rares, University Hospital Essen and UK Department of Health’s NIHR.https://www.nature.com/ncommspm2020Neurolog

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Administración Pública y Sociedad (ApyS). Núm. 10, Diciembre 1997

    No full text
    La Revista Administración Pública y Sociedad (APyS) es una publicación del Instituto de Investigación y Formación en Administración Pública (IIFAP), unidad académica perteneciente a la Facultad de Ciencias Sociales de la Universidad Nacional de Córdoba (UNC).publishedVersio
    corecore