199 research outputs found

    Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions

    Get PDF
    Patients with optic ataxia, a deficit in visually guided action, paradoxically improve when pantomiming an action towards memorized stimuli. Visual form agnosic patient D.F. shows the exact opposite pattern of results: although being able to grasp objects in real-time she loses grip scaling when grasping an object from memory. Here we explored the dissociation between immediate and delayed grasping in a patient (F.S.) who after a parietal-occipital stroke presented with severe left visual neglect, a loss of awareness of the contralesional side of space. Although F.S. had preserved grip scaling even in his neglected field, he was markedly impaired when asked to pretend to grasp a leftward object from memory. Critically, his deficit cannot be simply explained by the absence of continuous on-line visual feedback, as F.S. was also able to grasp leftward objects in real-time when vision was removed. We suggest that regions surrounding the parietal-occipital sulcus, typically damaged in patients with optic ataxia but spared in F.S., seem to be essential for real-time actions. On the other hand, our data indicates that regions in the ventral visual stream, damaged in D.F but intact in F.S., would appear to be necessary but not sufficient for memory-guided action

    Automatic correction of hand pointing in stereoscopic depth

    Get PDF
    In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)

    Activation of superior colliculi in humans during visual exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.</p> <p>Results</p> <p>Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.</p> <p>Conclusion</p> <p>Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.</p

    Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination

    Get PDF
    The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ1-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit

    Glucanocellulosic ethanol: The undiscovered biofuel potential in energy crops and marine biomass

    Get PDF
    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions

    The mosaic oat genome gives insights into a uniquely healthy cereal crop

    Get PDF
    Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies

    High-Throughput Construction of Intron-Containing Hairpin RNA Vectors for RNAi in Plants

    Get PDF
    With the wide use of double-stranded RNA interference (RNAi) for the analysis of gene function in plants, a high-throughput system for making hairpin RNA (hpRNA) constructs is in great demand. Here, we describe a novel restriction-ligation approach that provides a simple but efficient construction of intron-containing hpRNA (ihpRNA) vectors. The system takes advantage of the type IIs restriction enzyme BsaI and our new plant RNAi vector pRNAi-GG based on the Golden Gate (GG) cloning. This method requires only a single PCR product of the gene of interest flanked with BsaI recognition sequence, which can then be cloned into pRNAi-GG at both sense and antisense orientations simultaneously to form ihpRNA construct. The process, completed in one tube with one restriction-ligation step, produced a recombinant ihpRNA with high efficiency and zero background. We demonstrate the utility of the ihpRNA constructs generated with pRNAi-GG vector for the effective silencing of various individual endogenous and exogenous marker genes as well as two genes simultaneously. This method provides a novel and high-throughput platform for large-scale analysis of plant functional genomics
    corecore